Juan Feng, Lei Zhu, Cunman He, Ruidong Xiang, Jianxin Liu, Jie Cai, Diming Wang
{"title":"乳酸通过HIF1α稳定和生物钟紊乱诱导奶牛乳腺氧化应激","authors":"Juan Feng, Lei Zhu, Cunman He, Ruidong Xiang, Jianxin Liu, Jie Cai, Diming Wang","doi":"10.1186/s40104-025-01181-1","DOIUrl":null,"url":null,"abstract":"Lactate is a classical byproduct of glucose metabolism, and the main lactate production pathway depends on glycolysis. Lactate stabilized HIF1α by inhibiting PHD activity, leading to hypoxic stress response and exacerbating glycolysis in multiple tissues. However, the redox induction mechanism of lactate in mammary gland has not been understood yet. Herein, we describe a lactate-responsive HIF1α/circadian control mechanism in oxidative stress in the mammary glands of dairy cows. The in vivo study showed that dairy cows with high lactate concentrations are associated with reduced milk yield and more ROS accumulation in mammary gland. Western blot results in MAC-T cells showed positive correlation between lactate concentrations, expression of HIF1α and oxidative stress indicators, but not circadian core components. To test how lactate-mediated HIF1α dysfunction leads to cell protection process, we investigated altered expression of circadian core related genes following HIF1α stabilization. We found that stabilized HIF1α by lactate inhibited stimulated expression of circadian core components due to the similarity of HRE and E-box transcription elements. Furthermore, we found that lactate treatment strengthened the binding of HIF1α with BMAL1, HMOX1 and FOXO3 in MAC-T cells. Moreover, HIF1α knockdown altered expression of circadian rhythm related genes and reduced oxidative stress state. In summary, our study highlights the central role of competitive transcriptional element occupancy in lactate-mediated oxidative stress of mammary gland, which is caused by HIF1α stabilization and circadian rhythm dysfunction. Our findings introduce a novel nutritional strategy with potential applications in dairy farming for optimizing milk production and maintaining mammary gland health.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"23 1","pages":"62"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactate induces oxidative stress by HIF1α stabilization and circadian clock disturbance in mammary gland of dairy cows\",\"authors\":\"Juan Feng, Lei Zhu, Cunman He, Ruidong Xiang, Jianxin Liu, Jie Cai, Diming Wang\",\"doi\":\"10.1186/s40104-025-01181-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lactate is a classical byproduct of glucose metabolism, and the main lactate production pathway depends on glycolysis. Lactate stabilized HIF1α by inhibiting PHD activity, leading to hypoxic stress response and exacerbating glycolysis in multiple tissues. However, the redox induction mechanism of lactate in mammary gland has not been understood yet. Herein, we describe a lactate-responsive HIF1α/circadian control mechanism in oxidative stress in the mammary glands of dairy cows. The in vivo study showed that dairy cows with high lactate concentrations are associated with reduced milk yield and more ROS accumulation in mammary gland. Western blot results in MAC-T cells showed positive correlation between lactate concentrations, expression of HIF1α and oxidative stress indicators, but not circadian core components. To test how lactate-mediated HIF1α dysfunction leads to cell protection process, we investigated altered expression of circadian core related genes following HIF1α stabilization. We found that stabilized HIF1α by lactate inhibited stimulated expression of circadian core components due to the similarity of HRE and E-box transcription elements. Furthermore, we found that lactate treatment strengthened the binding of HIF1α with BMAL1, HMOX1 and FOXO3 in MAC-T cells. Moreover, HIF1α knockdown altered expression of circadian rhythm related genes and reduced oxidative stress state. In summary, our study highlights the central role of competitive transcriptional element occupancy in lactate-mediated oxidative stress of mammary gland, which is caused by HIF1α stabilization and circadian rhythm dysfunction. Our findings introduce a novel nutritional strategy with potential applications in dairy farming for optimizing milk production and maintaining mammary gland health.\",\"PeriodicalId\":14928,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":\"23 1\",\"pages\":\"62\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-025-01181-1\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-025-01181-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Lactate induces oxidative stress by HIF1α stabilization and circadian clock disturbance in mammary gland of dairy cows
Lactate is a classical byproduct of glucose metabolism, and the main lactate production pathway depends on glycolysis. Lactate stabilized HIF1α by inhibiting PHD activity, leading to hypoxic stress response and exacerbating glycolysis in multiple tissues. However, the redox induction mechanism of lactate in mammary gland has not been understood yet. Herein, we describe a lactate-responsive HIF1α/circadian control mechanism in oxidative stress in the mammary glands of dairy cows. The in vivo study showed that dairy cows with high lactate concentrations are associated with reduced milk yield and more ROS accumulation in mammary gland. Western blot results in MAC-T cells showed positive correlation between lactate concentrations, expression of HIF1α and oxidative stress indicators, but not circadian core components. To test how lactate-mediated HIF1α dysfunction leads to cell protection process, we investigated altered expression of circadian core related genes following HIF1α stabilization. We found that stabilized HIF1α by lactate inhibited stimulated expression of circadian core components due to the similarity of HRE and E-box transcription elements. Furthermore, we found that lactate treatment strengthened the binding of HIF1α with BMAL1, HMOX1 and FOXO3 in MAC-T cells. Moreover, HIF1α knockdown altered expression of circadian rhythm related genes and reduced oxidative stress state. In summary, our study highlights the central role of competitive transcriptional element occupancy in lactate-mediated oxidative stress of mammary gland, which is caused by HIF1α stabilization and circadian rhythm dysfunction. Our findings introduce a novel nutritional strategy with potential applications in dairy farming for optimizing milk production and maintaining mammary gland health.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.