Journal of AlgebraPub Date : 2025-02-06DOI: 10.1016/j.jalgebra.2025.01.024
Ezgi Kantarcı Oğuz , Emine Yıldırım
{"title":"Cluster expansions: T-walks, labeled posets and matrix calculations","authors":"Ezgi Kantarcı Oğuz , Emine Yıldırım","doi":"10.1016/j.jalgebra.2025.01.024","DOIUrl":"10.1016/j.jalgebra.2025.01.024","url":null,"abstract":"<div><div>We give two new combinatorial methods for computing cluster expansion formulas for arcs coming from possibly punctured surfaces. The first is by using <em>T-walks</em>, an extension of <em>T</em>-path models from <span><span>[43]</span></span>, <span><span>[44]</span></span> for unpunctured surfaces to general surfaces. To do so, we introduce a new combinatorial way to generate these paths. The second is by using order ideals of labeled posets associated to arcs. In this context, we use the methods introduced in <span><span>[25]</span></span>, <span><span>[26]</span></span> to give a quick way to calculate the expressions using 2 by 2 matrices. The techniques introduced are applicable to different settings in cluster algebras and beyond.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 183-219"},"PeriodicalIF":0.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-05DOI: 10.1016/j.jalgebra.2025.02.003
Detlev W. Hoffmann , Kristýna Zemková
{"title":"Vishik equivalence and similarity of quadratic forms over fields of characteristic 2","authors":"Detlev W. Hoffmann , Kristýna Zemková","doi":"10.1016/j.jalgebra.2025.02.003","DOIUrl":"10.1016/j.jalgebra.2025.02.003","url":null,"abstract":"<div><div>An important aspect in the algebraic theory of quadratic forms is the study of equivalence relations based on algebraic-geometric properties of the associated quadrics. A well-known criterion originally proved by Vishik in characteristic zero states that two nonsingular quadratic forms of the same dimension have identical Witt indices over all field extensions if and only if their motives are isomorphic in the category of (integral or mod 2) Chow motives. In characteristic 2, it is meaningful to include singular forms. We therefore define two quadratic forms (including singular ones) of the same dimension to be Vishik-equivalent if they share the same isotropy behavior (in a suitably defined way) over all field extensions. Similar quadratic forms are always Vishik-equivalent, but the converse need not hold. We determine various classes of quadratic forms in characteristic 2 where Vishik equivalence implies similarity and give nonsingular counterexamples in all dimensions <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>≥</mo><mn>8</mn></math></span>, and also singular counterexamples in dimension 8. To construct the counterexamples, we use a generalized notion of so-called half-neighbors in characteristic 2.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 118-142"},"PeriodicalIF":0.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-05DOI: 10.1016/j.jalgebra.2025.02.002
John Graf, Naihuan Jing
{"title":"Pfaffian formulation of Schur's Q-functions","authors":"John Graf, Naihuan Jing","doi":"10.1016/j.jalgebra.2025.02.002","DOIUrl":"10.1016/j.jalgebra.2025.02.002","url":null,"abstract":"<div><div>We introduce a Pfaffian formula that extends Schur's <em>Q</em>-functions <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> to be indexed by compositions <em>λ</em> with negative parts. This formula makes the Pfaffian construction more consistent with other constructions, such as the Young tableau and Vertex Operator constructions. With this construction, we develop a proof technique involving decomposing <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> into sums indexed by partitions with removed parts. Consequently, we are able to prove several identities of Schur's <em>Q</em>-functions using only simple algebraic methods.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 1-25"},"PeriodicalIF":0.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-05DOI: 10.1016/j.jalgebra.2025.02.006
Marcos Mazari-Armida
{"title":"On limit models and parametrized Noetherian rings","authors":"Marcos Mazari-Armida","doi":"10.1016/j.jalgebra.2025.02.006","DOIUrl":"10.1016/j.jalgebra.2025.02.006","url":null,"abstract":"<div><div>We study limit models in the abstract elementary class of modules with embeddings as algebraic objects. We characterize parametrized noetherian rings using the degree of injectivity of certain limit models.</div><div>We show that the number of limit models and how close a ring is from being noetherian are inversely proportional.</div><div><section><p><strong>Theorem 0.1</strong></p><div><em>Let</em> <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> <em>The following are equivalent.</em><ul><li><span>(1)</span><span><div><em>R is left</em> <span><math><mo>(</mo><mo><</mo><msub><mrow><mi>ℵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span><em>-noetherian but not left</em> <span><math><mo>(</mo><mo><</mo><msub><mrow><mi>ℵ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span><em>-noetherian.</em></div></span></li><li><span>(2)</span><span><div><em>The abstract elementary class of modules with embeddings has exactly</em> <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> <em>non-isomorphic λ-limit models for every</em> <span><math><mi>λ</mi><mo>≥</mo><msup><mrow><mo>(</mo><mi>card</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span> <em>such that the class is stable in λ.</em></div></span></li></ul></div></section></div><div>We further show that there are rings such that the abstract elementary class of modules with embeddings has exactly <em>κ</em> non-isomorphic <em>λ</em>-limit models for every infinite cardinal <em>κ</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 58-74"},"PeriodicalIF":0.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-05DOI: 10.1016/j.jalgebra.2025.02.001
Hatice Boylan , Nils-Peter Skoruppa
{"title":"A classical approach to relative quadratic extensions","authors":"Hatice Boylan , Nils-Peter Skoruppa","doi":"10.1016/j.jalgebra.2025.02.001","DOIUrl":"10.1016/j.jalgebra.2025.02.001","url":null,"abstract":"<div><div>We show that we can develop from scratch and using only classical language a theory of relative quadratic extensions of a given number field <em>K</em> which is as explicit and easy as for the well-known case that <em>K</em> is the field of rational numbers. As an application we prove a reciprocity law which expresses the number of solutions of a given quadratic equation modulo an integral ideal <span><math><mi>a</mi></math></span> of <em>K</em> in terms of <span><math><mi>a</mi></math></span> modulo the discriminant of the equation. We study various <em>L</em>-functions associated to relative quadratic extensions. In particular, we define, for totally negative algebraic integers Δ of a totally real number field <em>K</em> which are squares modulo 4, numbers <span><math><mi>H</mi><mo>(</mo><mi>Δ</mi><mo>,</mo><mi>K</mi><mo>)</mo></math></span>, which share important properties of classical Hurwitz class numbers. In an appendix we give a quick elementary proof of certain deeper properties of the Hilbert symbol on higher unit groups of dyadic local number fields.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 243-272"},"PeriodicalIF":0.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-05DOI: 10.1016/j.jalgebra.2025.02.004
Sourjya Banerjee , Mrinal Kanti Das
{"title":"Analogies of monic inversion principles in Laurent polynomial rings","authors":"Sourjya Banerjee , Mrinal Kanti Das","doi":"10.1016/j.jalgebra.2025.02.004","DOIUrl":"10.1016/j.jalgebra.2025.02.004","url":null,"abstract":"<div><div>This article focuses on establishing results concerning the inversion of special monic polynomials in Laurent polynomial rings. We prove monic inversion principles for unimodular rows, matrices and ideals; offering various applications in the area related to projective modules over Laurent polynomial algebras.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 220-242"},"PeriodicalIF":0.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-05DOI: 10.1016/j.jalgebra.2025.02.005
Anna M. Viergever
{"title":"Low degree motivic Donaldson-Thomas invariants of the three-dimensional projective space","authors":"Anna M. Viergever","doi":"10.1016/j.jalgebra.2025.02.005","DOIUrl":"10.1016/j.jalgebra.2025.02.005","url":null,"abstract":"<div><div>We use Levine's motivic analogues of virtual fundamental classes to define motivic Donaldson-Thomas invariants <span><math><msub><mrow><mover><mrow><mi>I</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> for <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> over <span><math><mi>R</mi></math></span>. We show that for <em>n</em> odd, <span><math><msub><mrow><mover><mrow><mi>I</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> and we compute <span><math><msub><mrow><mover><mrow><mi>I</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>10</mn><mo>,</mo><msub><mrow><mover><mrow><mi>I</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>25</mn></math></span> and <span><math><msub><mrow><mover><mrow><mi>I</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>6</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>50</mn></math></span>. We then make a conjecture about the general case, which “is” a motivic analogue of a classical theorem of Maulik-Nekrasov-Okounkov-Pandharipande.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 273-300"},"PeriodicalIF":0.8,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-04DOI: 10.1016/j.jalgebra.2025.01.023
Maosen Xu
{"title":"A class of uniformly bounded simple Z-graded Lie conformal algebras","authors":"Maosen Xu","doi":"10.1016/j.jalgebra.2025.01.023","DOIUrl":"10.1016/j.jalgebra.2025.01.023","url":null,"abstract":"<div><div>In this paper, we classify the following simple <span><math><mi>Z</mi></math></span>-graded Lie conformal algebras <span><math><mi>L</mi><mo>=</mo><msub><mrow><mo>⨁</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>Z</mi></mrow></msub><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> such that (1) <span><math><mi>r</mi><mi>a</mi><mi>n</mi><mi>k</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>1</mn></math></span>, (2) <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the Virasoro Lie conformal algebra.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 95-117"},"PeriodicalIF":0.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-04DOI: 10.1016/j.jalgebra.2025.01.020
Yu-Feng Yao
{"title":"Classification of simple modules of the Zassenhaus superalgebras with p-characters of height one","authors":"Yu-Feng Yao","doi":"10.1016/j.jalgebra.2025.01.020","DOIUrl":"10.1016/j.jalgebra.2025.01.020","url":null,"abstract":"<div><div>Let <em>n</em> be a positive integer, and <span><math><mi>A</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>[</mo><mi>x</mi><mo>]</mo><mo>/</mo><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msup><mo>)</mo></math></span>, <span><math><mo>⋀</mo><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>F</mi><mo>[</mo><mi>ξ</mi><mo>]</mo><mo>/</mo><mo>(</mo><msup><mrow><mi>ξ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> be the divided power algebra and the Grassmann superalgebra of one variable, respectively over an algebraically closed field <span><math><mi>F</mi></math></span> of prime characteristic <span><math><mi>p</mi><mo>></mo><mn>2</mn></math></span>. The Zassenhaus superalgebra <span><math><mi>Z</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is by definition the Lie superalgebra of the special super derivations of the superalgebra <span><math><mi>Π</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>A</mi><mo>(</mo><mi>n</mi><mo>)</mo><msub><mrow><mo>⊗</mo></mrow><mrow><mi>F</mi></mrow></msub><mo>⋀</mo><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. In this paper, we study simple modules of the Zassenhaus superalgebra <span><math><mi>Z</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> with <em>p</em>-characters of height one. A complete classification of the isomorphism classes of such simple modules and their dimensions are precisely determined. Moreover, a sufficient and necessary condition for irreducibility of Kac modules is given.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 159-182"},"PeriodicalIF":0.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-02-04DOI: 10.1016/j.jalgebra.2025.01.022
Guohua Qian
{"title":"Finite groups with non-complete character codegree graphs","authors":"Guohua Qian","doi":"10.1016/j.jalgebra.2025.01.022","DOIUrl":"10.1016/j.jalgebra.2025.01.022","url":null,"abstract":"<div><div>The codegree graph <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite group <em>G</em> is defined as follows: its vertices consist of all prime divisors of <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span>, and distinct vertices <em>p</em> and <em>q</em> are connected by an edge if and only if <em>G</em> admits an irreducible character with codegree divisible by <em>pq</em>. In this paper, we describe the finite groups whose codegree graphs are not complete, and in particular, we provide a complete description of nonsolvable groups whose codegree graphs have diameter three. Additionally, we show that <span><math><mi>Γ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is a subgraph of <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> whenever <em>H</em> is a subgroup of <em>G</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"669 ","pages":"Pages 75-94"},"PeriodicalIF":0.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}