Journal of AlgebraPub Date : 2025-03-20DOI: 10.1016/j.jalgebra.2025.03.013
Xu Gao , Jianqi Liu , Yiyi Zhu
{"title":"Twisted restricted conformal blocks of vertex operator algebras I: g-twisted correlation functions and fusion rules","authors":"Xu Gao , Jianqi Liu , Yiyi Zhu","doi":"10.1016/j.jalgebra.2025.03.013","DOIUrl":"10.1016/j.jalgebra.2025.03.013","url":null,"abstract":"<div><div>In this paper, we introduce a notion of <em>g</em>-twisted restricted conformal block on the three-pointed twisted projective line <figure><img></figure> associated with an untwisted module <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and the bottom levels of two <em>g</em>-twisted modules <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> over a vertex operator algebra <em>V</em>. We show that the space of twisted restricted conformal blocks is isomorphic to the space of <em>g</em>-twisted (restricted) correlation functions defined by the same datum and to the space of intertwining operators among these twisted modules. As an application, we derive a twisted version of the Fusion Rules Theorem.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"675 ","pages":"Pages 59-132"},"PeriodicalIF":0.8,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-03-20DOI: 10.1016/j.jalgebra.2025.03.018
Claus Scheiderer
{"title":"Convex hulls of curves in n-space","authors":"Claus Scheiderer","doi":"10.1016/j.jalgebra.2025.03.018","DOIUrl":"10.1016/j.jalgebra.2025.03.018","url":null,"abstract":"<div><div>Let <span><math><mi>K</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> be a convex semialgebraic set. The semidefinite extension degree <span><math><mi>sxdeg</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span> of <em>K</em> is the smallest number <em>d</em> such that <em>K</em> is a linear image of an intersection of finitely many spectrahedra, each of which is described by a linear matrix inequality of size ≤<em>d</em>. This invariant can be considered to be a measure for the intrinsic complexity of semidefinite optimization over the set <em>K</em>. For an arbitrary semialgebraic set <span><math><mi>S</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of dimension one, our main result states that the closed convex hull <em>K</em> of <em>S</em> satisfies <span><math><mi>sxdeg</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>≤</mo><mn>1</mn><mo>+</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. This bound is best possible in several ways. Before, the result was known for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span>, and also for general <em>n</em> in the case when <em>S</em> is a monomial curve.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 314-340"},"PeriodicalIF":0.8,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-03-17DOI: 10.1016/j.jalgebra.2025.02.047
Jonatan Andres Gomez Parada, Plamen Koshlukov
{"title":"Gradings, graded identities, ⁎-identities and graded ⁎-identities of an algebra of upper triangular matrices","authors":"Jonatan Andres Gomez Parada, Plamen Koshlukov","doi":"10.1016/j.jalgebra.2025.02.047","DOIUrl":"10.1016/j.jalgebra.2025.02.047","url":null,"abstract":"<div><div>Let <span><math><mi>K</mi><mo>〈</mo><mi>X</mi><mo>〉</mo></math></span> be the free associative algebra freely generated over the field <em>K</em> by the countable set <span><math><mi>X</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>}</mo></math></span>. If <em>A</em> is an associative <em>K</em>-algebra, we say that a polynomial <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>K</mi><mo>〈</mo><mi>X</mi><mo>〉</mo></math></span> is a polynomial identity, or simply an identity in <em>A</em> if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for every <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, …, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>A</mi></math></span>.</div><div>Consider <span><math><mi>A</mi></math></span> the subalgebra of <span><math><mi>U</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo></math></span> given by:<span><span><span><math><mi>A</mi><mo>=</mo><mi>K</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>)</mo><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>⊕</mo><mi>K</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></math></span> denote the matrix units. We investigate the gradings on the algebra <span><math><mi>A</mi></math></span>, determined by an abelian group, and prove that these gradings are elementary. Furthermore, we compute a basis for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-graded identities of <span><math><mi>A</mi></math></span>, and also for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-graded identities with graded involution. Moreover, we describe the cocharacters of this algebra.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 171-204"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-03-17DOI: 10.1016/j.jalgebra.2025.03.011
Markus Lohrey , Andreas Rosowski , Georg Zetzsche
{"title":"Membership problems in finite groups","authors":"Markus Lohrey , Andreas Rosowski , Georg Zetzsche","doi":"10.1016/j.jalgebra.2025.03.011","DOIUrl":"10.1016/j.jalgebra.2025.03.011","url":null,"abstract":"<div><div>We show that the subset sum problem, the knapsack problem and the rational subset membership problem for permutation groups are <strong>NP</strong>-complete. Concerning the knapsack problem we obtain <strong>NP</strong>-completeness for every fixed <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, where <em>n</em> is the number of permutations in the knapsack equation. In other words: membership in products of three cyclic permutation groups is <strong>NP</strong>-complete. This sharpens a result of Luks <span><span>[34]</span></span>, which states <strong>NP</strong>-completeness of the membership problem for products of three abelian permutation groups. We also consider the context-free membership problem in permutation groups and prove that it is <strong>PSPACE</strong>-complete but <strong>NP</strong>-complete for a restricted class of context-free grammars where acyclic derivation trees must have constant Horton-Strahler number. Our upper bounds hold for black box groups. The results for context-free membership problems in permutation groups yield new complexity bounds for various intersection non-emptiness problems for DFAs and a single context-free grammar. This paper is an extended version of the conference paper <span><span>[31]</span></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"675 ","pages":"Pages 23-58"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-03-17DOI: 10.1016/j.jalgebra.2025.02.042
Yuriy Drozd , Andriana Plakosh
{"title":"Representations and cohomologies of the alternating group of degree 4","authors":"Yuriy Drozd , Andriana Plakosh","doi":"10.1016/j.jalgebra.2025.02.042","DOIUrl":"10.1016/j.jalgebra.2025.02.042","url":null,"abstract":"<div><div>We describe integral representations of the alternating group <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, in particular, the Auslander-Reiten quiver of its 2-adic representations. Using these results we calculate Tate cohomologies of all <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-lattices.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 143-154"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-03-17DOI: 10.1016/j.jalgebra.2025.02.045
Pengcheng Li , Yanjun Liu , Jiping Zhang
{"title":"Broué's conjecture for isolated RoCK blocks of finite odd-dimensional orthogonal groups","authors":"Pengcheng Li , Yanjun Liu , Jiping Zhang","doi":"10.1016/j.jalgebra.2025.02.045","DOIUrl":"10.1016/j.jalgebra.2025.02.045","url":null,"abstract":"<div><div>In a series of papers, we shall prove that Broué's abelian defect group conjecture is true for all blocks of finite odd-dimensional orthogonal groups <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> at linear primes with <em>q</em> odd. This first paper is to prove the conjecture for isolated RoCK blocks of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> at odd linear primes.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 50-76"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-03-17DOI: 10.1016/j.jalgebra.2025.02.040
Leandro Cagliero , Gonzalo Gutierrez
{"title":"G-tables and the Poisson structure of the even cohomology of cotangent bundle of the Heisenberg Lie group","authors":"Leandro Cagliero , Gonzalo Gutierrez","doi":"10.1016/j.jalgebra.2025.02.040","DOIUrl":"10.1016/j.jalgebra.2025.02.040","url":null,"abstract":"<div><div>In the first part of the paper, we define the concept of a <em>G</em>-table of a <em>G</em>-(co)algebra and we compute the <em>G</em>-table of some <em>G</em>-(co)algebras (here, a <em>G</em>-algebra is an algebra on which <em>G</em> acts, semisimply, by algebra automorphisms). The <em>G</em>-table of a <em>G</em>-algebra <span><math><mi>A</mi></math></span> is a set of scalars that provides precise and concise information about both the algebra structure and the <em>G</em>-module structure of <span><math><mi>A</mi></math></span>. In particular, the ordinary multiplication table of <span><math><mi>A</mi></math></span> can be derived from the <em>G</em>-table of <span><math><mi>A</mi></math></span>. Using the <em>G</em>-table of a <em>G</em>-algebra <span><math><mi>A</mi></math></span>, we define an associated plain algebra <span><math><mi>P</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and present some basic functoriality results related to <em>P</em>.</div><div>Obtaining the <em>G</em>-table of a given <em>G</em>-algebra <span><math><mi>A</mi></math></span> requires significant work, but the result is a very powerful tool, as shown in the second part of the paper. Here, we compute the <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-tables of the Poisson algebra structure of the even-degree part of the cohomology associated to the cotangent bundle of the 3-dimensional Heisenberg Lie group with Lie algebra <span><math><mi>h</mi></math></span>, that is <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>,</mo><msup><mrow><mo>⋀</mo></mrow><mrow><mo>•</mo></mrow></msup><mi>h</mi><mo>)</mo></math></span>. This Poisson <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-algebra has dimension 18. From these <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>K</mi><mo>)</mo></math></span>-tables we deduce that the underlying Lie algebra of <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> is isomorphic to <span><math><mrow><mi>gl</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo><mo>⋉</mo><mrow><mi>gl</mi></mrow><msub><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>K</mi><mo>)</mo></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span> with the first factor acting on the second (abelian) factor by the adjoint representation. It is notable that the Lie algebra structure on <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mo>•</mo><mo>,</mo><mo>•</mo></mrow></msubsup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> contains a semisimple Lie subalgebra (in this case <","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 205-234"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-03-14DOI: 10.1016/j.jalgebra.2025.02.044
Nam Kyun Kim , Pace P. Nielsen , Michał Ziembowski
{"title":"Radicals in polynomial rings skewed by an endomorphism","authors":"Nam Kyun Kim , Pace P. Nielsen , Michał Ziembowski","doi":"10.1016/j.jalgebra.2025.02.044","DOIUrl":"10.1016/j.jalgebra.2025.02.044","url":null,"abstract":"<div><div>Given a ring <em>R</em>, radicals of the polynomial ring <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, and even of the skew polynomial ring <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>;</mo><mi>σ</mi><mo>]</mo></math></span> skewed by an endomorphism <em>σ</em> on <em>R</em>, have been studied and described for many different radicals. Often, in those descriptions, the ring <em>R</em> was assumed to be unital, or the endomorphism <em>σ</em> was assumed to be an automorphism. Here we systematically study what happens when such assumptions are dropped, and generalize to even more radicals. Our results reveal three key properties that, when present, allow a simple description of a radical of <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>;</mo><mi>σ</mi><mo>]</mo></math></span>. Moreover, multiple examples are provided showing that when <em>σ</em> is injective, but not surjective, wild growth patterns may occur.</div><div>We also answer an open question in the literature, by showing that the Levitzki radical of the skew Laurent polynomial ring <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>;</mo><mi>σ</mi><mo>]</mo></math></span> (when <em>σ</em> is an automorphism) is not naively describable in terms of the Levitzki radicals of <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>;</mo><mi>σ</mi><mo>]</mo></math></span> and <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>;</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 117-142"},"PeriodicalIF":0.8,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of AlgebraPub Date : 2025-03-14DOI: 10.1016/j.jalgebra.2025.02.043
Quanyong Chen, Zhaobing Fan, Qi Wang
{"title":"Affine flag varieties of type D","authors":"Quanyong Chen, Zhaobing Fan, Qi Wang","doi":"10.1016/j.jalgebra.2025.02.043","DOIUrl":"10.1016/j.jalgebra.2025.02.043","url":null,"abstract":"<div><div>The Hecke algebras and quantum group of affine type <em>A</em> admit geometric realizations in terms of complete flags and partial flags over a local field, respectively. Subsequently, it is demonstrated that the quantum group associated to partial flag varieties of affine type <em>C</em> is a coideal subalgebra of quantum group of affine type <em>A</em>. In this paper, we establish a lattice presentation of the complete (partial) flag varieties of affine type <em>D</em>. Additionally, we determine the structures of convolution algebra associated to complete flag varieties of affine type <em>D</em>, which is isomorphic to the (extended) affine Hecke algebra. We also show that there exists a monomial basis and a canonical basis of the convolution algebra, and establish the positivity properties of the canonical basis with respect to multiplication.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"674 ","pages":"Pages 257-275"},"PeriodicalIF":0.8,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}