Remarks on the sections of universal hyperelliptic curves

IF 0.8 2区 数学 Q2 MATHEMATICS
Tatsunari Watanabe
{"title":"Remarks on the sections of universal hyperelliptic curves","authors":"Tatsunari Watanabe","doi":"10.1016/j.jalgebra.2025.06.040","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the obstruction for the sections of the universal hyperelliptic curves of genus <span><math><mi>g</mi><mo>≥</mo><mn>3</mn></math></span>. The obstruction of our interest comes from the relative completion of the hyperelliptic mapping class groups and the Lie algebra of the unipotent completion of the fundamental group of the configuration space of a compact oriented surface. Using the obstruction, we prove that the Birman exact sequence for the hyperelliptic mapping class groups does not split for <span><math><mi>g</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 761-802"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004028","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the obstruction for the sections of the universal hyperelliptic curves of genus g3. The obstruction of our interest comes from the relative completion of the hyperelliptic mapping class groups and the Lie algebra of the unipotent completion of the fundamental group of the configuration space of a compact oriented surface. Using the obstruction, we prove that the Birman exact sequence for the hyperelliptic mapping class groups does not split for g3.
关于普适超椭圆曲线截面的若干注释
本文研究了g≥3属的泛超椭圆曲线截面上的阻力。我们的兴趣障碍来自于超椭圆映射类群的相对补全和紧致取向曲面的位形空间基本群的幂等补全的李代数。利用阻塞证明了超椭圆映射类群的Birman精确序列在g≥3时不分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信