{"title":"代数HW(b)上的非权模","authors":"Yan Liu, Yao Ma, Liangyun Chen","doi":"10.1016/j.jalgebra.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>For the parameter <span><math><mi>b</mi><mo>∈</mo><mi>C</mi></math></span>, let <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span> be the semidirect product of the Witt algebra and the loop Heisenberg Lie algebra. In this paper, we study some non-weight modules over <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span>, specifically focusing on restricted modules, <span><math><mi>U</mi><mo>(</mo><mi>C</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-free modules of rank 1 and the tensor product of both. We prove that these three classes of non-weight <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span>-modules are pairwise non-isomorphic. Finally, we transform some tensor product modules over <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span> into induced modules from modules of its certain subalgebras for the case <span><math><mi>b</mi><mo>≠</mo><mo>±</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 604-632"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-weight modules over the algebra HW(b)\",\"authors\":\"Yan Liu, Yao Ma, Liangyun Chen\",\"doi\":\"10.1016/j.jalgebra.2025.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the parameter <span><math><mi>b</mi><mo>∈</mo><mi>C</mi></math></span>, let <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span> be the semidirect product of the Witt algebra and the loop Heisenberg Lie algebra. In this paper, we study some non-weight modules over <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span>, specifically focusing on restricted modules, <span><math><mi>U</mi><mo>(</mo><mi>C</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-free modules of rank 1 and the tensor product of both. We prove that these three classes of non-weight <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span>-modules are pairwise non-isomorphic. Finally, we transform some tensor product modules over <span><math><mrow><mi>HW</mi></mrow><mo>(</mo><mi>b</mi><mo>)</mo></math></span> into induced modules from modules of its certain subalgebras for the case <span><math><mi>b</mi><mo>≠</mo><mo>±</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"683 \",\"pages\":\"Pages 604-632\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002186932500393X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932500393X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
For the parameter , let be the semidirect product of the Witt algebra and the loop Heisenberg Lie algebra. In this paper, we study some non-weight modules over , specifically focusing on restricted modules, -free modules of rank 1 and the tensor product of both. We prove that these three classes of non-weight -modules are pairwise non-isomorphic. Finally, we transform some tensor product modules over into induced modules from modules of its certain subalgebras for the case .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.