{"title":"具有有限多个非正规子群同构类的群","authors":"Fausto De Mari","doi":"10.1016/j.jalgebra.2025.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>A subgroup <em>H</em> of a group <em>G</em> is said to be <em>pronormal</em> if <em>H</em> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> are conjugate in <span><math><mo>〈</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>〉</mo></math></span> for every element <em>g</em> of <em>G</em>. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 719-733"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groups with finitely many isomorphism classes of non-pronormal subgroups\",\"authors\":\"Fausto De Mari\",\"doi\":\"10.1016/j.jalgebra.2025.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A subgroup <em>H</em> of a group <em>G</em> is said to be <em>pronormal</em> if <em>H</em> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> are conjugate in <span><math><mo>〈</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>〉</mo></math></span> for every element <em>g</em> of <em>G</em>. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"683 \",\"pages\":\"Pages 719-733\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003941\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003941","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Groups with finitely many isomorphism classes of non-pronormal subgroups
A subgroup H of a group G is said to be pronormal if H and are conjugate in for every element g of G. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.