具有有限多个非正规子群同构类的群

IF 0.8 2区 数学 Q2 MATHEMATICS
Fausto De Mari
{"title":"具有有限多个非正规子群同构类的群","authors":"Fausto De Mari","doi":"10.1016/j.jalgebra.2025.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>A subgroup <em>H</em> of a group <em>G</em> is said to be <em>pronormal</em> if <em>H</em> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> are conjugate in <span><math><mo>〈</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>〉</mo></math></span> for every element <em>g</em> of <em>G</em>. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 719-733"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groups with finitely many isomorphism classes of non-pronormal subgroups\",\"authors\":\"Fausto De Mari\",\"doi\":\"10.1016/j.jalgebra.2025.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A subgroup <em>H</em> of a group <em>G</em> is said to be <em>pronormal</em> if <em>H</em> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> are conjugate in <span><math><mo>〈</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>〉</mo></math></span> for every element <em>g</em> of <em>G</em>. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"683 \",\"pages\":\"Pages 719-733\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003941\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003941","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果H和Hg对G的每个元素G在< H,Hg >中共轭,则群G的子群H被称为正态群。有限或无限群中的正态子群的行为经常被研究,特别是所有子群都是正态的(广义)可溶群的结构是已知的。本文证明了任何非正规子群落入有限多个同构类的(广义)可溶群要么是极小极大群,要么是所有子群都正规的群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups with finitely many isomorphism classes of non-pronormal subgroups
A subgroup H of a group G is said to be pronormal if H and Hg are conjugate in H,Hg for every element g of G. The behaviour of pronormal subgroups in finite or infinite groups has been often investigated and, in particular, the structure of (generalized) soluble groups in which all subgroups are pronormal is known. Here it is proved that any (generalized) soluble group in which non-pronormal subgroups fall into finitely many isomorphism classes either is minimax or a group in which all subgroups are pronormal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信