开闭tqft的插补

IF 0.8 2区 数学 Q2 MATHEMATICS
Barthélémy Neyra
{"title":"开闭tqft的插补","authors":"Barthélémy Neyra","doi":"10.1016/j.jalgebra.2025.06.036","DOIUrl":null,"url":null,"abstract":"<div><div>For any symmetric monoidal category <span><math><mi>C</mi></math></span>, Lauda and Pfeiffer showed the equivalence between the <span><math><mi>C</mi></math></span>-valued open-closed 2-dimensional TQFTs and the so-called knowledgeable Frobenius algebras (kFAs) in <span><math><mi>C</mi></math></span>. A kFA in the category of finite-dimensional vector spaces over a field <span><math><mi>K</mi></math></span> provides a sequence of scalars indexed by the set <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of diffeomorphism classes of connected endocobordisms of the empty set, given by evaluation of the associated TQFT on each such cobordism class. More generally, from an arbitrary sequence <span><math><mi>χ</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>w</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>g</mi><mo>,</mo><mi>w</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, we show how to build a symmetric monoidal category <span><math><mo>〈</mo><msub><mrow><mi>T</mi></mrow><mrow><mtext>kFA</mtext></mrow></msub><mo>|</mo><mi>χ</mi><mo>〉</mo></math></span>, with unit object <strong>1</strong> satisfying <span><math><mtext>End</mtext><mo>(</mo><mtext>1</mtext><mo>)</mo><mo>≅</mo><mi>K</mi></math></span>, generated by a kFA affording this sequence. We then determine which sequences <em>χ</em> produce semisimple abelian categories <span><math><mo>〈</mo><msub><mrow><mi>T</mi></mrow><mrow><mtext>kFA</mtext></mrow></msub><mo>|</mo><mi>χ</mi><mo>〉</mo></math></span> with finite-dimensional hom-spaces. These categories generalise results of Deligne concerning the interpolation of families of categories of representations such as <span><math><mtext>Rep</mtext><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mtext>Rep</mtext><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>, and <span><math><mtext>Rep</mtext><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>≀</mo><mi>P</mi><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 1-36"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolation of open-closed TQFTs\",\"authors\":\"Barthélémy Neyra\",\"doi\":\"10.1016/j.jalgebra.2025.06.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any symmetric monoidal category <span><math><mi>C</mi></math></span>, Lauda and Pfeiffer showed the equivalence between the <span><math><mi>C</mi></math></span>-valued open-closed 2-dimensional TQFTs and the so-called knowledgeable Frobenius algebras (kFAs) in <span><math><mi>C</mi></math></span>. A kFA in the category of finite-dimensional vector spaces over a field <span><math><mi>K</mi></math></span> provides a sequence of scalars indexed by the set <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of diffeomorphism classes of connected endocobordisms of the empty set, given by evaluation of the associated TQFT on each such cobordism class. More generally, from an arbitrary sequence <span><math><mi>χ</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>w</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>g</mi><mo>,</mo><mi>w</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, we show how to build a symmetric monoidal category <span><math><mo>〈</mo><msub><mrow><mi>T</mi></mrow><mrow><mtext>kFA</mtext></mrow></msub><mo>|</mo><mi>χ</mi><mo>〉</mo></math></span>, with unit object <strong>1</strong> satisfying <span><math><mtext>End</mtext><mo>(</mo><mtext>1</mtext><mo>)</mo><mo>≅</mo><mi>K</mi></math></span>, generated by a kFA affording this sequence. We then determine which sequences <em>χ</em> produce semisimple abelian categories <span><math><mo>〈</mo><msub><mrow><mi>T</mi></mrow><mrow><mtext>kFA</mtext></mrow></msub><mo>|</mo><mi>χ</mi><mo>〉</mo></math></span> with finite-dimensional hom-spaces. These categories generalise results of Deligne concerning the interpolation of families of categories of representations such as <span><math><mtext>Rep</mtext><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mtext>Rep</mtext><mo>(</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>, and <span><math><mtext>Rep</mtext><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>≀</mo><mi>P</mi><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"684 \",\"pages\":\"Pages 1-36\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004065\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任意对称一元范畴C, Lauda和Pfeiffer证明了C值开闭二维TQFT与C中所谓的知识Frobenius代数(kFA)之间的等价性。域K上有限维向量空间范畴中的kFA提供了由空集合的连通内共体的微分同态类的集合N2索引的标量序列,该序列由每个这样的共体类上的相关TQFT的评估给出。更一般地说,从任意序列χ=(χg,w)g,w∈N,我们展示了如何构建一个对称的一元范畴< TkFA|χ >,其单位对象1满足End(1) × K,由提供该序列的kFA生成。然后,我们确定哪些序列χ产生具有有限维主空间的半简单阿贝尔范畴< TkFA|χ >。这些类别概括了Deligne关于表示的类别族的插值结果,如Rep(Sd), Rep(Od)和Rep(Sη献祭PGLd)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolation of open-closed TQFTs
For any symmetric monoidal category C, Lauda and Pfeiffer showed the equivalence between the C-valued open-closed 2-dimensional TQFTs and the so-called knowledgeable Frobenius algebras (kFAs) in C. A kFA in the category of finite-dimensional vector spaces over a field K provides a sequence of scalars indexed by the set N2 of diffeomorphism classes of connected endocobordisms of the empty set, given by evaluation of the associated TQFT on each such cobordism class. More generally, from an arbitrary sequence χ=(χg,w)g,wN, we show how to build a symmetric monoidal category TkFA|χ, with unit object 1 satisfying End(1)K, generated by a kFA affording this sequence. We then determine which sequences χ produce semisimple abelian categories TkFA|χ with finite-dimensional hom-spaces. These categories generalise results of Deligne concerning the interpolation of families of categories of representations such as Rep(Sd), Rep(Od), and Rep(SηPGLd).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信