Multivariable Vandermonde determinants, amalgams of matrices and Specht modules

IF 0.8 2区 数学 Q2 MATHEMATICS
Francis Brown
{"title":"Multivariable Vandermonde determinants, amalgams of matrices and Specht modules","authors":"Francis Brown","doi":"10.1016/j.jalgebra.2025.03.040","DOIUrl":null,"url":null,"abstract":"<div><div>Using results of Fayers on the structure of Specht modules, we prove two different formulae for the determinant of a matrix which is obtained by amalgamating the entries of two smaller matrices. In particular, this gives formulae for multivariable Vandermonde determinants as a sum of completely factorising terms, each of which is a Vandermonde determinant in fewer variables. As an application, we deduce an elementary proof of the multiplicativity of the transfinite diameter for products of compact sets.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 253-278"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325001954","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using results of Fayers on the structure of Specht modules, we prove two different formulae for the determinant of a matrix which is obtained by amalgamating the entries of two smaller matrices. In particular, this gives formulae for multivariable Vandermonde determinants as a sum of completely factorising terms, each of which is a Vandermonde determinant in fewer variables. As an application, we deduce an elementary proof of the multiplicativity of the transfinite diameter for products of compact sets.
多变量Vandermonde行列式,矩阵和Specht模块的混合
利用Fayers关于Specht模结构的结果,证明了一个矩阵的行列式的两个不同的公式,这个行列式是由两个较小的矩阵的元素合并得到的。特别地,这给出了多变量Vandermonde行列式的公式,作为完全因子分解项的和,每个项都是较少变量的Vandermonde行列式。作为应用,我们给出了紧集积的超径可乘性的一个初等证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信