Weyl modules for queer Lie superalgebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Saudamini Nayak
{"title":"Weyl modules for queer Lie superalgebras","authors":"Saudamini Nayak","doi":"10.1016/j.jalgebra.2025.03.052","DOIUrl":null,"url":null,"abstract":"<div><div>We define global and local Weyl modules for <span><math><mi>q</mi><mo>⊗</mo><mi>A</mi></math></span>, where <span><math><mi>q</mi></math></span> is the queer Lie superalgebra and <em>A</em> is an associative commutative unital <span><math><mi>C</mi></math></span>-algebra. We prove that global Weyl modules are universal highest weight objects in certain category up to parity reversing functor Π. Then with the assumption that <em>A</em> is finitely generated, it is shown that the local Weyl modules are finite dimensional and further they are universal highest map-weight objects in certain category up to Π. Finally, we prove a tensor product property for local Weyl modules.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"678 ","pages":"Pages 196-223"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define global and local Weyl modules for qA, where q is the queer Lie superalgebra and A is an associative commutative unital C-algebra. We prove that global Weyl modules are universal highest weight objects in certain category up to parity reversing functor Π. Then with the assumption that A is finitely generated, it is shown that the local Weyl modules are finite dimensional and further they are universal highest map-weight objects in certain category up to Π. Finally, we prove a tensor product property for local Weyl modules.
酷儿Lie超代数的Weyl模块
我们定义了q⊗A的全局和局部Weyl模,其中q是酷儿李超代数,A是结合交换一元c代数。我们证明了全局Weyl模是在奇偶反转函子Π范围内的全称最高权对象。然后在A是有限生成的假设下,证明了局部Weyl模块是有限维的,并且是某个类别内映射权值最高的通称对象,直到Π。最后,我们证明了局部Weyl模的张量积性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信