Journal of Algebra最新文献

筛选
英文 中文
Infinite-dimensional Lie bialgebras via affinization of perm bialgebras and pre-Lie bialgebras 通过 perm 双桥和前列双桥的肤射化实现无穷维列双桥
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-24 DOI: 10.1016/j.jalgebra.2024.09.006
Yuanchang Lin , Peng Zhou , Chengming Bai
{"title":"Infinite-dimensional Lie bialgebras via affinization of perm bialgebras and pre-Lie bialgebras","authors":"Yuanchang Lin ,&nbsp;Peng Zhou ,&nbsp;Chengming Bai","doi":"10.1016/j.jalgebra.2024.09.006","DOIUrl":"10.1016/j.jalgebra.2024.09.006","url":null,"abstract":"<div><div>It is known that the operads of perm algebras and pre-Lie algebras are the Koszul dual each other and hence there is a Lie algebra structure on the tensor product of a perm algebra and a pre-Lie algebra. Conversely, we construct a special perm algebra structure and a special pre-Lie algebra structure on the vector space of Laurent polynomials such that the tensor product with a pre-Lie algebra and a perm algebra being a Lie algebra structure characterizes the pre-Lie algebra and the perm algebra respectively. This is called the affinization of a pre-Lie algebra and a perm algebra respectively. Furthermore we extend such correspondences to the context of bialgebras, that is, there is a bialgebra structure for a perm algebra or a pre-Lie algebra which could be characterized by the fact that its affinization by a quadratic pre-Lie algebra or a quadratic perm algebra respectively gives an infinite-dimensional Lie bialgebra. In the case of perm algebras, the corresponding bialgebra structure is called a perm bialgebra, which can be independently characterized by a Manin triple of perm algebras as well as a matched pair of perm algebras. The notion of the perm Yang-Baxter equation is introduced, whose symmetric solutions give rise to perm bialgebras. There is a correspondence between symmetric solutions of the perm Yang-Baxter equation in perm algebras and certain skew-symmetric solutions of the classical Yang-Baxter equation in the infinite-dimensional Lie algebras induced from the perm algebras. In the case of pre-Lie algebras, the corresponding bialgebra structure is a pre-Lie bialgebra which is well-constructed. The similar correspondences for the related structures are given.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogeneous quandles with abelian inner automorphism groups 具有非等边内自变群的均质曲
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-17 DOI: 10.1016/j.jalgebra.2024.09.004
Takuya Saito , Sakumi Sugawara
{"title":"Homogeneous quandles with abelian inner automorphism groups","authors":"Takuya Saito ,&nbsp;Sakumi Sugawara","doi":"10.1016/j.jalgebra.2024.09.004","DOIUrl":"10.1016/j.jalgebra.2024.09.004","url":null,"abstract":"<div><div>In this paper, we give a characterization of homogeneous quandles with abelian inner automorphism groups. In particular, we show that such a quandle is expressed as an abelian extension of a trivial quandle. Our construction is a generalization of the recent work by Furuki and Tamaru, which gives a construction of disconnected flat quandles.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn 论 GLn 的 p-adic Deligne-Lusztig varieties 的模ℓ 同调
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-17 DOI: 10.1016/j.jalgebra.2024.08.033
Jakub Löwit
{"title":"On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn","authors":"Jakub Löwit","doi":"10.1016/j.jalgebra.2024.08.033","DOIUrl":"10.1016/j.jalgebra.2024.08.033","url":null,"abstract":"<div><div>In 1976, Deligne and Lusztig realized the representation theory of finite groups of Lie type inside étale cohomology of certain algebraic varieties. Recently, a <em>p</em>-adic version of this theory started to emerge: there are <em>p</em>-adic Deligne–Lusztig spaces, whose cohomology encodes representation theoretic information for <em>p</em>-adic groups – for instance, it partially realizes the local Langlands correspondence with characteristic zero coefficients. However, the parallel case of coefficients of positive characteristic <span><math><mi>ℓ</mi><mo>≠</mo><mi>p</mi></math></span> has not been inspected so far. The purpose of this article is to initiate such an inspection. In particular, we relate cohomology of certain <em>p</em>-adic Deligne–Lusztig spaces to Vignéras's modular local Langlands correspondence for <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tilting theory for finite dimensional 1-Iwanaga-Gorenstein algebras 有限维 1-岩永-哥伦布代数的倾斜理论
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-17 DOI: 10.1016/j.jalgebra.2024.08.034
Yuta Kimura , Hiroyuki Minamoto , Kota Yamaura
{"title":"Tilting theory for finite dimensional 1-Iwanaga-Gorenstein algebras","authors":"Yuta Kimura ,&nbsp;Hiroyuki Minamoto ,&nbsp;Kota Yamaura","doi":"10.1016/j.jalgebra.2024.08.034","DOIUrl":"10.1016/j.jalgebra.2024.08.034","url":null,"abstract":"<div><div>We study tilting objects of the stable category <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>A</mi></math></span> of graded Cohen-Macaulay modules over a finite dimensional graded Iwanaga-Gorenstein algebra <em>A</em>. We first show that if there exists a tilting object in <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>A</mi></math></span>, then its endomorphism algebra always has finite global dimension. Next, to study the existence of a tilting object, we introduce a numerical invariant <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In the case where <em>A</em> is 1-Iwanaga-Gorenstein, we give a sufficient condition on <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for the existence of a tilting object. As an application, for a truncated preprojective algebra <span><math><mi>Π</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub></math></span> of a tree quiver <em>Q</em>, we prove that <span><math><msup><mrow><munder><mrow><mrow><mi>CM</mi></mrow></mrow><mo>_</mo></munder></mrow><mrow><mi>Z</mi></mrow></msup><mspace></mspace><mi>Π</mi><msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mrow><mi>w</mi></mrow></msub></math></span> always admits a tilting object.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ore localisation for differential graded rings; towards Goldie's theorem for differential graded algebras 微分级数环的矿石局部化;迈向微分级数代数的戈尔迪定理
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-17 DOI: 10.1016/j.jalgebra.2024.08.032
Alexander Zimmermann
{"title":"Ore localisation for differential graded rings; towards Goldie's theorem for differential graded algebras","authors":"Alexander Zimmermann","doi":"10.1016/j.jalgebra.2024.08.032","DOIUrl":"10.1016/j.jalgebra.2024.08.032","url":null,"abstract":"<div><div>We study Ore localisation of differential graded algebras. Further we define dg-prime rings, dg-semiprime rings, and study the dg-nil radical of dg-rings. Then, we define dg-essential submodules, dg-uniform dimension, and apply all this to a dg-version of Goldie's theorem on prime dg-rings.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metric ultraproducts of groups — Simplicity, perfectness and torsion 群的公设超积 - 简单性、完备性和扭转性
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-17 DOI: 10.1016/j.jalgebra.2024.09.005
Jakub Gismatullin , Krzysztof Majcher , Martin Ziegler
{"title":"Metric ultraproducts of groups — Simplicity, perfectness and torsion","authors":"Jakub Gismatullin ,&nbsp;Krzysztof Majcher ,&nbsp;Martin Ziegler","doi":"10.1016/j.jalgebra.2024.09.005","DOIUrl":"10.1016/j.jalgebra.2024.09.005","url":null,"abstract":"<div><div>We characterise the simplicity of metric ultraproducts of a family of metric groups. We also present several new examples of simple groups, such as metric ultraproducts of finite and infinite symmetric groups, linear groups, and interval exchange transformation groups. Using similar methods, we also examine concepts such as genericity, perfectness, and torsion.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the polynomiality conjecture of cluster realization of quantum groups 论量子群簇实现的多项式猜想
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-17 DOI: 10.1016/j.jalgebra.2024.08.031
Ivan Chi-Ho Ip , Jeff York Ye
{"title":"On the polynomiality conjecture of cluster realization of quantum groups","authors":"Ivan Chi-Ho Ip ,&nbsp;Jeff York Ye","doi":"10.1016/j.jalgebra.2024.08.031","DOIUrl":"10.1016/j.jalgebra.2024.08.031","url":null,"abstract":"<div><div>In this paper, we give a sufficient and necessary condition for a regular element of a quantum cluster algebra <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> to be universally polynomial. This resolves several conjectures by the first author on the polynomiality of the cluster realization of quantum group generators in different families of positive representations.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seminormal forms for the Temperley-Lieb algebra Temperley-Lieb 代数的半正态形式
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-10 DOI: 10.1016/j.jalgebra.2024.09.003
Katherine Ormeño Bastías , Steen Ryom-Hansen
{"title":"Seminormal forms for the Temperley-Lieb algebra","authors":"Katherine Ormeño Bastías ,&nbsp;Steen Ryom-Hansen","doi":"10.1016/j.jalgebra.2024.09.003","DOIUrl":"10.1016/j.jalgebra.2024.09.003","url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> be the rational Temperley-Lieb algebra, with loop parameter 2. In the first part of the paper we study the seminormal idempotents <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> for <span><math><mi>t</mi></math></span> running over two-column standard tableaux. Our main result is here a concrete combinatorial construction of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> using Jones-Wenzl idempotents <span><math><msub><mrow><mi>JW</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>Q</mi></mrow></msubsup></math></span> where <span><math><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>.</p><p>In the second part of the paper we consider the Temperley-Lieb algebra <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <span><math><mi>p</mi><mo>&gt;</mo><mn>2</mn></math></span>. The KLR-approach to <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> gives rise to an action of a symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> on <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span>, for some <span><math><mi>m</mi><mo>&lt;</mo><mi>n</mi></math></span>. We show that the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>'s from the first part of the paper are simultaneous eigenvectors for the associated Jucys-Murphy elements for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. This leads to a KLR-interpretation of the <em>p</em>-Jones-Wenzl idempotent <span><math><mmultiscripts><mrow><mi>JW</mi></mrow><mrow><mi>n</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mi>p</mi></mrow></mmultiscripts></math></span> for <span><math><msubsup><mrow><mi>TL</mi></mrow><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span>, that was introduced recently by Burull, Libedinsky and Sentinelli.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristic subgroups and the R∞-property for virtual braid groups 虚拟辫状群的特征子群和 R∞ 属性
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-06 DOI: 10.1016/j.jalgebra.2024.09.002
Karel Dekimpe , Daciberg Lima Gonçalves , Oscar Ocampo
{"title":"Characteristic subgroups and the R∞-property for virtual braid groups","authors":"Karel Dekimpe ,&nbsp;Daciberg Lima Gonçalves ,&nbsp;Oscar Ocampo","doi":"10.1016/j.jalgebra.2024.09.002","DOIUrl":"10.1016/j.jalgebra.2024.09.002","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (resp. &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) denote the virtual braid group (resp. virtual pure braid group), let &lt;span&gt;&lt;math&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (resp. &lt;span&gt;&lt;math&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) denote the welded braid group (resp. welded pure braid group) and let &lt;span&gt;&lt;math&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (resp. &lt;span&gt;&lt;math&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) denote the unrestricted virtual braid group (resp. unrestricted virtual pure braid group). In the first part of this paper we prove that, for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, the group &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; the groups &lt;span&gt;&lt;math&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are characteristic subgroups of &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, respectively. In the second part of the paper we show that, for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, the virtual braid group &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, the unrestricted virtual pure braid group &lt;span&gt;&lt;math&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, and the unrestricted virtual braid group &lt;span&gt;&lt;math&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; have the R&lt;sub&gt;∞&lt;/sub&gt;-property. As a consequence of the technique used for few strings we also prove that, for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, the welded braid group &lt;span&gt;&lt;math&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; has the R&lt;sub&gt;∞&lt;/sub&gt;-property and that for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; the corresponding pure braid groups have the R&lt;sub&gt;∞&lt;/sub&gt;-property. On the other hand for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; it is unknown if the R&lt;sub&gt;∞&lt;/sub&gt;-property holds or not for the virtual pure braid group &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;m","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central extensions of axial algebras 轴代数的中心扩展
IF 0.8 2区 数学
Journal of Algebra Pub Date : 2024-09-05 DOI: 10.1016/j.jalgebra.2024.09.001
Ivan Kaygorodov , Cándido Martín González , Pilar Páez-Guillán
{"title":"Central extensions of axial algebras","authors":"Ivan Kaygorodov ,&nbsp;Cándido Martín González ,&nbsp;Pilar Páez-Guillán","doi":"10.1016/j.jalgebra.2024.09.001","DOIUrl":"10.1016/j.jalgebra.2024.09.001","url":null,"abstract":"<div><p>In this article, we develop a further adaptation of the method of Skjelbred-Sund to construct central extensions of axial algebras. We use our method to prove that all axial central extensions (with respect to a maximal set of axes) of complex simple finite-dimensional Jordan algebras are split, and that all non-split axial central extensions of dimension <span><math><mi>n</mi><mo>≤</mo><mn>4</mn></math></span> over an algebraically closed field of characteristic not 2 are Jordan. Also, we give a classification of 2-dimensional axial algebras and describe some important properties of these algebras.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信