{"title":"重新访问了字符度和局部子组","authors":"J. Miquel Martínez","doi":"10.1016/j.jalgebra.2025.03.045","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>p</em> and <em>q</em> be different primes and let <em>G</em> be a finite <em>q</em>-solvable group. We prove that <span><math><msub><mrow><mi>Irr</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>⊆</mo><msub><mrow><mi>Irr</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> if and only if <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>⊆</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for some <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>Syl</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>Q</mi><mo>∈</mo><msub><mrow><mi>Syl</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Further, if <em>B</em> is a <em>q</em>-block of <em>G</em> and <em>p</em> does not divide the degree of any character in <span><math><mi>Irr</mi><mo>(</mo><mi>B</mi><mo>)</mo></math></span> then we prove that a Sylow <em>p</em>-subgroup of <em>G</em> is normalized by a defect group of <em>B</em>. This removes the <em>p</em>-solvability condition of two theorems of G. Navarro and T.R. Wolf.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"676 ","pages":"Pages 311-317"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Character degrees and local subgroups revisited\",\"authors\":\"J. Miquel Martínez\",\"doi\":\"10.1016/j.jalgebra.2025.03.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>p</em> and <em>q</em> be different primes and let <em>G</em> be a finite <em>q</em>-solvable group. We prove that <span><math><msub><mrow><mi>Irr</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>⊆</mo><msub><mrow><mi>Irr</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> if and only if <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>⊆</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for some <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>Syl</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>Q</mi><mo>∈</mo><msub><mrow><mi>Syl</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Further, if <em>B</em> is a <em>q</em>-block of <em>G</em> and <em>p</em> does not divide the degree of any character in <span><math><mi>Irr</mi><mo>(</mo><mi>B</mi><mo>)</mo></math></span> then we prove that a Sylow <em>p</em>-subgroup of <em>G</em> is normalized by a defect group of <em>B</em>. This removes the <em>p</em>-solvability condition of two theorems of G. Navarro and T.R. Wolf.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"676 \",\"pages\":\"Pages 311-317\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002029\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002029","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 p 和 q 是不同的素数,设 G 是有限的 q 可解群。我们证明,对于某个 P∈Sylp(G) 和 Q∈Sylq(G) 而言,当且仅当 NG(P)⊆NG(Q)和 CQ′(P)=1 时,Irrp′(G)⊆Irrq′(G)。此外,如果 B 是 G 的 q 块,且 p 不除 Irr(B) 中任何特征的度,那么我们证明 G 的 Sylow p 子群是由 B 的缺陷群规范化的。
Let p and q be different primes and let G be a finite q-solvable group. We prove that if and only if and for some and . Further, if B is a q-block of G and p does not divide the degree of any character in then we prove that a Sylow p-subgroup of G is normalized by a defect group of B. This removes the p-solvability condition of two theorems of G. Navarro and T.R. Wolf.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.