Yangsean Choi, Ji Su Ko, Ji Eun Park, Geunu Jeong, Minkook Seo, Yohan Jun, Shohei Fujita, Berkin Bilgic
{"title":"Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain.","authors":"Yangsean Choi, Ji Su Ko, Ji Eun Park, Geunu Jeong, Minkook Seo, Yohan Jun, Shohei Fujita, Berkin Bilgic","doi":"10.1097/RLI.0000000000001114","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001114","url":null,"abstract":"<p><strong>Abstract: </strong>Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep learning reconstruction (DLR) and quantitative MRI techniques beyond conventional structural imaging. DLR using deep neural networks facilitates accelerated imaging with improved signal-to-noise ratio and spatial resolution, enhancing image quality with short scan times. DLR focuses on supervised learning applied to clinical implementation and applications. Quantitative MRI techniques, exemplified by 2D multidynamic multiecho, 3D quantification using interleaved Look-Locker acquisition sequences with T2 preparation pulses, and magnetic resonance fingerprinting, enable precise calculation of brain-tissue parameters and further advance diagnostic accuracy and efficiency. Potential DLR instabilities and quantification and bias limitations will be discussed. This review underscores the synergistic potential of DLR and quantitative MRI, offering prospects for improved brain imaging beyond conventional methods.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photon-Counting Detector CT Radiological-Histological Correlation in Cadaveric Human Lung Nodules and Airways.","authors":"Akinori Hata, Masahiro Yanagawa, Keisuke Ninomiya, Noriko Kikuchi, Masako Kurashige, Chiaki Masuda, Tsubasa Yoshida, Daiki Nishigaki, Shuhei Doi, Kazuki Yamagata, Yuriko Yoshida, Ryo Ogawa, Yukiko Tokuda, Eiichi Morii, Noriyuki Tomiyama","doi":"10.1097/RLI.0000000000001117","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001117","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to compare the performances of photon-counting detector computed tomography (PCD-CT) and energy-integrating detector computed tomography (EID-CT) for visualizing nodules and airways in human cadaveric lungs.</p><p><strong>Materials and methods: </strong>Previously obtained 20 cadaveric lungs were scanned, and images were prospectively acquired by EID-CT and PCD-CT at a radiation dose with a noise level equivalent to the diagnostic reference level. PCD-CT was scanned with ultra-high-resolution mode. The EID-CT images were reconstructed with a 512 matrix, 0.6-mm thickness, and a 350-mm field of view (FOV). The PCD-CT images were reconstructed at 3 settings: PCD-512: same as EID-CT; PCD-1024-FOV350: 1024 matrix, 0.2-mm thickness, 350-mm FOV; and PCD-1024-FOV50: 1024 matrix, 0.2-mm thickness, 50-mm FOV. Two specimens per lung were examined after hematoxylin and eosin staining. The CT images were evaluated for nodules on a 5-point scale and for airways on a 4-point scale to compare the histology. The Wilcoxon signed rank test with Bonferroni correction was performed for statistical analyses.</p><p><strong>Results: </strong>Sixty-seven nodules (1321 μm; interquartile range [IQR], 758-3105 μm) and 92 airways (851 μm; IQR, 514-1337 μm) were evaluated. For nodules and airways, scores decreased in order of PCD-1024-FOV50, PCD-1024-FOV350, PCD-512, and EID-CT. Significant differences were observed between series other than PCD-1024-FOV350 versus PCD-1024-FOV50 for nodules (PCD-1024-FOV350 vs PCD-1024-FOV50, P = 0.063; others P < 0.001) and between series other than EID-CT versus PCD-512 for airways (EID-CT vs PCD-512, P = 0.549; others P < 0.005). On PCD-1024-FOV50, the median size of barely detectable nodules was 604 μm (IQR, 469-756 μm) and that of barely detectable airways was 601 μm (IQR, 489-929 μm). On EID-CT, that of barely detectable nodules was 837 μm (IQR, 678-914 μm) and that of barely detectable airways was 1210 μm (IQR, 674-1435 μm).</p><p><strong>Conclusions: </strong>PCD-CT visualized small nodules and airways better than EID-CT and improved with high spatial resolution and potentially can detect submillimeter nodules and airways.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Zhou, Afrouz Ataei, Donglai Huo, Liqiang Ren, Lorna P Browne, Xin Zhou, Jason P Weinman
{"title":"Optimal Spectral Performance on Pediatric Photon-Counting CT: Investigating Phantom-Based Size-Dependent kV Selection for Spectral Body Imaging.","authors":"Wei Zhou, Afrouz Ataei, Donglai Huo, Liqiang Ren, Lorna P Browne, Xin Zhou, Jason P Weinman","doi":"10.1097/RLI.0000000000001119","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001119","url":null,"abstract":"<p><strong>Purpose: </strong>The comprehensive evaluation of kV selection on photon-counting computed tomography (PCCT) has yet to be performed. The aim of the study is to evaluate and determine the optimal kV options for variable pediatric body sizes on the PCCT unit.</p><p><strong>Materials and methods: </strong>In this study, 4 phantoms of variable sizes were utilized to represent abdomens of newborn, 5-year-old, 10-year-old, and adult-sized pediatric patients. One solid water and 4 solid iodine inserts with known concentrations (2, 5, 10, and 15 mg I/mL) were inserted into phantoms. Each phantom setting was scanned on a PCCT system (Siemens Alpha) with 4 kV options (70 and 90 kV under Quantum Mode, 120 and 140 kV under QuantumPlus Mode) and clinical dual-source (3.0 pitch) protocol. For each phantom setting, radiation dose (CTDIvol) was determined by clinical dose settings and matched for all kV acquisitions. Sixty percent clinical dose images were also acquired. Reconstruction was matched across all acquisitions using Qr40 kernel and QIR level 3. Virtual monoenergetic images (VMIs) between 40 and 80 keV with 10 keV interval were generated on the scanner. Low-energy and high-energy images were reconstructed from each scan and subsequently used to generate an iodine map (IM) using an image-based 2-material decomposition method. Image noise of VMIs from each kV acquisition was calculated and compared between kV options. Absolute percent error (APE) of iodine CT number accuracy in VMIs was calculated and compared. Root mean square error (RMSE) and bias of iodine quantification from IMs were compared across kV options.</p><p><strong>Results: </strong>At the newborn size and 50 keV VMI, noise is lower at low kV acquisitions (70 kV: 10.5 HU, 90 kV: 10.4 HU), compared with high kV acquisitions (120 kV: 13.8 HU, 140 kV: 13.9 HU). At the newborn size and 70 keV VMI, the image noise from different kV options is comparable (9.4 HU for 70 kV, 8.9 HU for 90 kV, 9.7 HU for 120 kV, 10.2 HU for 140 kV). For APE of VMI, high kV (120 or 140 kV) performed overall better than low kV (70 or 90 kV). At the 5-year-old size, APE of 90 kV (median: 3.6%) is significantly higher (P < 0.001, Kruskal-Wallis rank sum test with Bonferroni correction) than 140 kV (median: 1.6%). At adult size, APE of 70 kV (median: 18.0%) is significantly higher (P < 0.0001, Kruskal-Wallis rank sum test with Bonferroni correction) than 120 kV (median: 1.4%) or 140 kV (median: 0.8%). The high kV also demonstrated lower RMSE and bias than the low kV across all controlled conditions. At 10-year-old size, RMSE and bias of 120 kV are 1.4 and 0.2 mg I/mL, whereas those from 70 kV are 1.9 and 0.8 mg I/mL.</p><p><strong>Conclusions: </strong>The high kV options (120 or 140 kV) on the PCCT unit demonstrated overall better performance than the low kV options (70 or 90 kV), in terms of image quality of VMIs and IMs. Our results recommend the use of high kV for general body imaging on the PCCT.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gustavo R Sarria, Jens Fleckenstein, Miriam Eckl, Florian Stieler, Arne Ruder, Martin Bendszus, Leonard C Schmeel, David Koch, Andreas Feisst, Marco Essig, Frederik Wenz, Frank A Giordano
{"title":"Impact of the Novel MRI Contrast Agent Gadopiclenol on Radiotherapy Decision Making in Patients With Brain Metastases.","authors":"Gustavo R Sarria, Jens Fleckenstein, Miriam Eckl, Florian Stieler, Arne Ruder, Martin Bendszus, Leonard C Schmeel, David Koch, Andreas Feisst, Marco Essig, Frederik Wenz, Frank A Giordano","doi":"10.1097/RLI.0000000000001115","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001115","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study was to assess the effect of gadopiclenol versus gadobenate dimeglumine contrast-enhanced magnetic resonance imaging (MRI) on decision-making between whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) for treatment of brain metastases (BMs).</p><p><strong>Methods: </strong>Patients with BMs underwent 2 separate MRI examinations in a double-blind crossover phase IIb comparative study between the MRI contrast agents gadopiclenol and gadobenate dimeglumine, both administered at 0.1 mmol/kg. The imaging data of a single site using identical MRI scanners and protocols were included in this post hoc analysis. Patients with 1 or more BMs in any of both MRIs were subjected to target volume delineation for treatment planning. Two radiation oncologists contoured all visible lesions and decided upon SRS or WBRT, according to the number of metastases. For each patient, SRS or WBRT treatment plans were calculated for both MRIs, considering the gross target volume (GTV) as the contrast-enhancing aspects of the tumor. Mean GTVs and volume of healthy brain exposed to 12 Gy (V12), as well as Dice similarity coefficient scores, were obtained. The Spearman rank (ρ) correlation was additionally calculated for assessing linear differences. Three different expert radiation oncologists blindly rated the contrast enhancement for contouring purposes.</p><p><strong>Results: </strong>Thirteen adult patients were included. Gadopiclenol depicted additional BM as compared with gadobenate dimeglumine in 7 patients (54%). Of a total of 63 identified metastatic lesions in both MRI sets, 3 subgroups could be defined: A, 48 (24 pairs) detected equal GTVs visible in both modalities; B, 13 GTVs only visible in the gadopiclenol set (mean ± SD, 0.16 ± 0.37 cm3); and C, 2 GTVs only visible in the gadobenate dimeglumine set (mean ± SD, 0.01 ± 0.01). Treatment indication was changed for 2 (15%) patients, 1 from no treatment to SRS and for 1 from SRS to WBRT. The mean GTVs and brain V12 were comparable between both agents (P = 0.694, P = 0.974). The mean Dice similarity coefficient was 0.70 ± 0.14 (ρ = 0.82). According to the readers, target volume definition was improved in 63.9% of cases (23 of 36 evaluations) with gadopiclenol and 22.2% with gadobenate dimeglumine (8 of 36), whereas equivalence was obtained in 13.9% (5 of 36).</p><p><strong>Conclusions: </strong>Gadopiclenol-enhanced MRI improved BM detection and characterization, with a direct impact on radiotherapy treatment decision between WBRT and SRS. Additionally, a more exact target delineation and planning could be performed with gadopiclenol. A prospective evaluation in a larger cohort of patients is required to confirm these findings.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seunghyun Lee, Saebeom Hur, Young Hun Choi, Jae-Yeon Hwang, Jung-Eun Cheon
{"title":"MR Lymphangiography: Congenital Lymphatic Flow Disorders.","authors":"Seunghyun Lee, Saebeom Hur, Young Hun Choi, Jae-Yeon Hwang, Jung-Eun Cheon","doi":"10.1097/RLI.0000000000001112","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001112","url":null,"abstract":"<p><strong>Abstract: </strong>Congenital lymphatic flow disorders collectively refer to a heterogeneous group of diseases that manifest as chylothorax, chylous ascites, intestinal lymphangiectasia, protein-losing enteropathy, and peripheral extremity or genital lymphedema, all in the absence of identifiable injury to the lymphatic system. We have only recently begun to understand congenital lymphatic flow disorders through the ability to image lymph flow dynamically. Intranodal dynamic contrast-enhanced magnetic resonance lymphangiography (DCMRL) is a crucial technique for imaging lymphatic flow in pediatric patients with congenital lymphatic flow disorders. However, as lymphatic imaging is still a nascent discipline with many uncertainties regarding optimal imaging and treatment, effective patient management requires a comprehensive understanding of imaging techniques, disease pathophysiology, and multidisciplinary treatment approaches. Above all, a fundamental understanding of the physiological lymphatic flow of the central conducting lymphatics is essential for the correct interpretation of DCMRL images. This knowledge helps to avoid unnecessary examinations, erroneous diagnoses, and potentially harmful treatment approaches. This review provides an overview of the methods, advantages, and precautions for interpreting the DCMRL examination, a state-of-the-art lymphatic system imaging technique, and shares various case studies.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrian A Marth, Georg Constantin Feuerriegel, Florian Wanivenhaus, Daniel Nanz, Reto Sutter
{"title":"7 T Lumbosacral Plexus Neurography: Feasibility and Comparison of Spinal Nerve Visualization With 3 T MRI.","authors":"Adrian A Marth, Georg Constantin Feuerriegel, Florian Wanivenhaus, Daniel Nanz, Reto Sutter","doi":"10.1097/RLI.0000000000001113","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001113","url":null,"abstract":"<p><strong>Objectives: </strong>7 T magnetic resonance (MR) imaging can offer superior spatial resolution compared with lower field strengths. However, its use for imaging of the lumbosacral plexus has been constrained by technical challenges and therefore remained relatively unexplored. Therefore, this study investigated the feasibility of 7 T MR neurography by means of comparing the visibility of the spinal nerves and image quality to 3 T MR neurography.</p><p><strong>Materials and methods: </strong>In this monocentric, institutional review board-approved, prospective study, 30 healthy subjects underwent acquisition time-matched 7 T MR neurography and 3 T MR neurography of the lumbar spine using a 3-dimensional dual-echo steady-state sequence. Visibility of the nerve root, dorsal root ganglia, and spinal nerve fascicles of L1-S1, along with image artifacts and overall image quality, were compared between the different field strengths by 2 radiologists using 4-point Likert scales (1 = poor, 4 = excellent). Comparisons between field strengths were made using the Wilcoxon signed rank test, and interobserver agreement was assessed.</p><p><strong>Results: </strong>7 T MR neurography enabled significantly improved visualization of the lumbar nerve roots, dorsal root ganglia, and spinal nerve fascicles (P ≤ 0.002). Compared with 3 T MR neurography, no difference in overall image quality was observed (P = 0.211), although 7 T MR imaging exhibited significantly increased image artifacts (P < 0.001). Interobserver agreement (κ) for qualitative measures ranged from 0.71 to 0.88 for 7 T, and from 0.75 to 0.91 for 3 T.</p><p><strong>Conclusions: </strong>7 T MR neurography allowed for improved visualization of lumbar spinal nerves, whereas overall image quality was comparable to 3 T MR neurography. This supports the feasibility of 7 T MR neurography of the lumbosacral plexus, even though image artifacts at 7 T were significantly increased.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current Status of Magnetic Resonance Imaging Use in Bladder Cancer.","authors":"Hyungwoo Ahn","doi":"10.1097/RLI.0000000000001099","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001099","url":null,"abstract":"<p><strong>Abstract: </strong>Bladder cancer (BC) is a significant global health concern, with over 500,000 new cases and 200,000 deaths annually, emphasizing the need for accurate staging and effective management. Traditional diagnostic techniques, such as cystoscopy and transurethral resection, are fundamental but have limitations in accurately assessing the depth of invasion. These limitations include the possibility of understaging and procedural variability, which can significantly impact treatment decisions. This review focuses on the role of multiparametric magnetic resonance imaging (mpMRI) in the diagnosis and staging of BC, particularly emphasizing the Vesical Imaging-Reporting and Data System (VI-RADS) framework. By enhancing interpretive consistency and diagnostic accuracy, mpMRI and VI-RADS offer detailed visualization of tumor characteristics and depth of invasion, while reducing the need for more invasive traditional methods. These advancements not only improve staging accuracy but also enhance treatment planning, underscoring the importance of advanced imaging in evolving BC management and positively influencing patient outcomes.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photon-Counting Detector CT Applications in Musculoskeletal Radiology.","authors":"Jan-Peter Grunz, Henner Huflage","doi":"10.1097/RLI.0000000000001108","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001108","url":null,"abstract":"<p><strong>Abstract: </strong>Photon-counting detectors (PCDs) have emerged as one of the most influential technical developments for medical imaging in recent memory. Surpassing conventional systems with energy-integrating detector technology in many aspects, PCD-CT scanners provide superior spatial resolution and dose efficiency for all radiological subspecialities. Demanding detailed display of trabecular microarchitecture and extensive anatomical coverage frequently within the same scan, musculoskeletal (MSK) imaging in particular can be a beneficiary of PCD-CT's remarkable performance. Since PCD-CT provides users with a plethora of customization options for both image acquisition and reconstruction, however, MSK radiologists need to be familiar with the scanner to unlock its full potential. From filter-based spectral shaping for artifact reduction over full field-of-view ultra-high-resolution scans to postprocessing of single- or dual-source multienergy data, almost every imaging task can be met with an optimized approach in PCD-CT. The objectives of this review were to give an overview of the most promising applications of PCD-CT in MSK imaging to date, to state current limitations, and to highlight directions for future research and developments.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigative RadiologyPub Date : 2024-08-01Epub Date: 2024-01-12DOI: 10.1097/RLI.0000000000001061
Sylvain Bodard, Louise Denis, Georges Chabouh, Jacques Battaglia, Dany Anglicheau, Olivier Hélénon, Jean-Michel Correas, Olivier Couture
{"title":"Visualization of Renal Glomeruli in Human Native Kidneys With Sensing Ultrasound Localization Microscopy.","authors":"Sylvain Bodard, Louise Denis, Georges Chabouh, Jacques Battaglia, Dany Anglicheau, Olivier Hélénon, Jean-Michel Correas, Olivier Couture","doi":"10.1097/RLI.0000000000001061","DOIUrl":"10.1097/RLI.0000000000001061","url":null,"abstract":"<p><strong>Objectives: </strong>Kidney diseases significantly impact individuals' quality of life and strongly reduce life expectancy. Glomeruli play a crucial role in kidney function. Current imaging techniques cannot visualize them due to their small size. Sensing ultrasound localization microscopy (sULM) has shown promising results for visualizing in vivo the glomeruli of human kidney grafts. This study aimed to evaluate the ability of sULM to visualize glomeruli in vivo in native human kidneys despite their depth and a shorter duration of ultrasound acquisition limited by the period of the patient's apnea. Sensing ultrasound localization microscopy parameters in native kidneys and kidney grafts and their consequence regarding glomeruli detection were also compared.</p><p><strong>Materials and methods: </strong>Exploration by sULM was conducted in 15 patients with native kidneys and 5 with kidney allografts. Glomeruli were counted using a normalized distance metric projected onto sULM density maps. The difference in the acquisition time, the kidney depth, and the frame rate between native kidneys and kidney grafts and their consequence regarding glomeruli detection were assessed.</p><p><strong>Results: </strong>Glomerular visualization was achieved in 12 of 15 patients with native kidneys. It failed due to impossible breath-holding for 2 patients and a too-deep kidney for 1 patient. Sensing ultrasound localization microscopy found 16 glomeruli per square centimeter in the native kidneys (6-31) and 33 glomeruli per square centimeter in kidney transplant patients (18-55).</p><p><strong>Conclusions: </strong>This study demonstrated that sULM can visualize glomeruli in native human kidneys in vivo. The proposed method may have many hypothetical applications, including biomarker development, assisting biopsy, or potentially avoiding it. It establishes a framework for improving the detection of local microstructural pathology, influencing the evaluation of allografts, and facilitating disease monitoring in the native kidney.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"561-568"},"PeriodicalIF":7.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigative RadiologyPub Date : 2024-08-01Epub Date: 2024-02-08DOI: 10.1097/RLI.0000000000001065
Georg C Feuerriegel, Sophia S Goller, Constantin von Deuster, Reto Sutter
{"title":"Inflammatory Knee Synovitis: Evaluation of an Accelerated FLAIR Sequence Compared With Standard Contrast-Enhanced Imaging.","authors":"Georg C Feuerriegel, Sophia S Goller, Constantin von Deuster, Reto Sutter","doi":"10.1097/RLI.0000000000001065","DOIUrl":"10.1097/RLI.0000000000001065","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to assess the diagnostic value and accuracy of a deep learning (DL)-accelerated fluid attenuated inversion recovery (FLAIR) sequence with fat saturation (FS) in patients with inflammatory synovitis of the knee.</p><p><strong>Materials and methods: </strong>Patients with suspected knee synovitis were retrospectively included between January and September 2023. All patients underwent a 3 T knee magnetic resonance imaging including a DL-accelerated noncontrast FLAIR FS sequence (acquisition time: 1 minute 38 seconds) and a contrast-enhanced (CE) T1-weighted FS sequence (acquisition time: 4 minutes 50 seconds), which served as reference standard. All knees were scored by 2 radiologists using the semiquantitative modified knee synovitis score, effusion synovitis score, and Hoffa inflammation score. Diagnostic confidence, image quality, and image artifacts were rated on separate Likert scales. Wilcoxon signed rank test was used to compare the semiquantitative scores. Interreader and intrareader reproducibility were calculated using Cohen κ.</p><p><strong>Results: </strong>Fifty-five patients (mean age, 52 ± 17 years; 28 females) were included in the study. Twenty-seven patients (49%) had mild to moderate synovitis (synovitis score 6-13), and 17 patients (31%) had severe synovitis (synovitis score >14). No signs of synovitis were detected in 11 patients (20%) (synovitis score <5). Semiquantitative assessment of the whole knee synovitis score showed no significant difference between the DL-accelerated FLAIR sequence and the CE T1-weighted sequence (mean FLAIR score: 10.69 ± 8.83, T1 turbo spin-echo FS: 10.74 ± 10.32; P = 0.521). Both interreader and intrareader reproducibility were excellent (range Cohen κ [0.82-0.96]).</p><p><strong>Conclusions: </strong>Assessment of inflammatory knee synovitis using a DL-accelerated noncontrast FLAIR FS sequence was feasible and equivalent to CE T1-weighted FS imaging.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"599-604"},"PeriodicalIF":7.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}