Investigative RadiologyPub Date : 2025-03-01Epub Date: 2024-08-02DOI: 10.1097/RLI.0000000000001108
Jan-Peter Grunz, Henner Huflage
{"title":"Photon-Counting Detector CT Applications in Musculoskeletal Radiology.","authors":"Jan-Peter Grunz, Henner Huflage","doi":"10.1097/RLI.0000000000001108","DOIUrl":"10.1097/RLI.0000000000001108","url":null,"abstract":"<p><strong>Abstract: </strong>Photon-counting detectors (PCDs) have emerged as one of the most influential technical developments for medical imaging in recent memory. Surpassing conventional systems with energy-integrating detector technology in many aspects, PCD-CT scanners provide superior spatial resolution and dose efficiency for all radiological subspecialities. Demanding detailed display of trabecular microarchitecture and extensive anatomical coverage frequently within the same scan, musculoskeletal (MSK) imaging in particular can be a beneficiary of PCD-CT's remarkable performance. Since PCD-CT provides users with a plethora of customization options for both image acquisition and reconstruction, however, MSK radiologists need to be familiar with the scanner to unlock its full potential. From filter-based spectral shaping for artifact reduction over full field-of-view ultra-high-resolution scans to postprocessing of single- or dual-source multienergy data, almost every imaging task can be met with an optimized approach in PCD-CT. The objectives of this review were to give an overview of the most promising applications of PCD-CT in MSK imaging to date, to state current limitations, and to highlight directions for future research and developments.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"198-204"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigative RadiologyPub Date : 2025-03-01Epub Date: 2024-10-09DOI: 10.1097/RLI.0000000000001121
Ilham Maimouni, Céline Henoumont, Marie-Christine De Goltstein, Jean-François Mayer, Anissa Dehimi, Yamina Boubeguira, Christina Kattenbeck, Torben J Maas, Nathalie Decout, Izabela Strzeminska, Gwénaëlle Bazin, Christelle Medina, Cécile Factor, Olivier Rousseaux, Uwe Karst, Sophie Laurent, Sarah Catoen
{"title":"Gadopiclenol: A q = 2 Gadolinium-Based MRI Contrast Agent Combining High Stability and Efficacy.","authors":"Ilham Maimouni, Céline Henoumont, Marie-Christine De Goltstein, Jean-François Mayer, Anissa Dehimi, Yamina Boubeguira, Christina Kattenbeck, Torben J Maas, Nathalie Decout, Izabela Strzeminska, Gwénaëlle Bazin, Christelle Medina, Cécile Factor, Olivier Rousseaux, Uwe Karst, Sophie Laurent, Sarah Catoen","doi":"10.1097/RLI.0000000000001121","DOIUrl":"10.1097/RLI.0000000000001121","url":null,"abstract":"<p><strong>Objectives: </strong>Gadopiclenol is a q = 2 pyclen gadolinium-based contrast agent (GBCA) recently approved by the Food and Drug Administration, European Medicines Agency, and other European countries. The aim of this report is to demonstrate its stability in multiple stressed in vitro conditions and in vivo, in rat kidney, while maintaining its higher relaxivity compared with conventional GBCAs on the market.</p><p><strong>Materials and methods: </strong>Both gadopiclenol and its chemical precursor Pi828-Gd were characterized and compared with q = 1 gadolinium (Gd) complexes. The number of water molecules coordinated to the Gd (the hydration number, q) was determined by luminescence. 17 O NMR (Nuclear Magnetic Resonance) measurements gave access to the water residence time τ M . These parameters were used for the fitting of the nuclear magnetic relaxation dispersion profiles in water. Proton relaxivities of the complexes were determined in different media at 60 MHz (1.4 T), at different pH and temperature. The kinetic inertness was investigated in human serum, acidic media, under zinc competition in the presence of phosphate, and under ligand competition. The in vivo stability was evaluated in rat kidneys 12 months after repeated injections.</p><p><strong>Results: </strong>The presence of 2 inner-sphere water molecules per Gd complex was confirmed for both pyclen derivatives. The high relaxivity of the complexes in water is maintained under physiological conditions, even under stressed conditions (ionic media, extreme pH, and temperature), which guarantees their efficiency in a large range of in vivo situations. Gd release from the q = 2 complexes was investigated in different potentially destabilizing conditions. Either no Gd release or a slower one than with \"q = 1\" stable macrocyclic GBCA (acidic conditions) was observed. Their kinetic inertness was demonstrated in physiological conditions, and the Gd release was below the lower limit of quantification of 0.1 μM after 12 days at 37°C in human serum. It was also demonstrated that gadopiclenol is stable in vivo in rat kidney 12 months after repeated injections.</p><p><strong>Conclusions: </strong>Thanks to its optimized structural design, gadopiclenol is a highly stable and effective macrocyclic q = 2 GBCA.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"234-243"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigative RadiologyPub Date : 2025-03-01Epub Date: 2024-08-28DOI: 10.1097/RLI.0000000000001118
Céline Smekens, Quinten Beirinckx, Frederik Bosmans, Floris Vanhevel, Annemiek Snoeckx, Jan Sijbers, Ben Jeurissen, Thomas Janssens, Pieter Van Dyck
{"title":"Deep Learning-Enhanced Accelerated 2D TSE and 3D Superresolution Dixon TSE for Rapid Comprehensive Knee Joint Assessment.","authors":"Céline Smekens, Quinten Beirinckx, Frederik Bosmans, Floris Vanhevel, Annemiek Snoeckx, Jan Sijbers, Ben Jeurissen, Thomas Janssens, Pieter Van Dyck","doi":"10.1097/RLI.0000000000001118","DOIUrl":"10.1097/RLI.0000000000001118","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to evaluate the use of a multicontrast deep learning (DL)-reconstructed 4-fold accelerated 2-dimensional (2D) turbo spin echo (TSE) protocol and the feasibility of 3-dimensional (3D) superresolution reconstruction (SRR) of DL-enhanced 6-fold accelerated 2D Dixon TSE magnetic resonance imaging (MRI) for comprehensive knee joint assessment, by comparing image quality and diagnostic performance with a conventional 2-fold accelerated 2D TSE knee MRI protocol.</p><p><strong>Materials and methods: </strong>This prospective, ethics-approved study included 19 symptomatic adult subjects who underwent knee MRI on a clinical 3 T scanner. Every subject was scanned with 3 DL-enhanced acquisition protocols in a single session: a clinical standard 2-fold in-plane parallel imaging (PI) accelerated 2D TSE-based protocol (5 sequences, 11 minutes 23 seconds) that served as a reference, a DL-reconstructed 4-fold accelerated 2D TSE protocol combining 2-fold PI and 2-fold simultaneous multislice acceleration (5 sequences, 6 minutes 24 seconds), and a 3D SRR protocol based on DL-enhanced 6-fold accelerated (ie, 3-fold PI and 2-fold simultaneous multislice) 2D Dixon TSE MRI (6 anisotropic 2D Dixon TSE acquisitions rotated around the phase-encoding axis, 6 minutes 24 seconds). This resulted in a total of 228 knee MRI scans comprising 21,204 images. Three readers evaluated all pseudonymized and randomized images in terms of image quality using a 5-point Likert scale. Two of the readers (musculoskeletal radiologists) additionally evaluated anatomical visibility and diagnostic confidence to assess normal and pathological knee structures with a 5-point Likert scale. They recorded the presence and location of internal knee derangements, including cartilage defects, meniscal tears, tears of ligaments, tendons and muscles, and bone injuries. The statistical analysis included nonparametric Friedman tests, and interreader and intrareader agreement assessment using the weighted Fleiss-Cohen kappa (κ) statistic. P values of less than 0.05 were considered statistically significant.</p><p><strong>Results: </strong>The evaluated DL-enhanced 4-fold accelerated 2D TSE protocol provided very similar image quality and anatomical visibility to the standard 2D TSE protocol, whereas the 3D SRR Dixon TSE protocol scored less in terms of overall image quality due to reduced edge sharpness and the presence of artifacts ( P < 0.001). Subjective signal-to-noise ratio, contrast resolution, fluid brightness, and fat suppression were good to excellent for all protocols. For 1 reader, the Dixon method of the 3D SRR protocol provided significantly better fat suppression than the spectral fat saturation applied in the standard 2D TSE protocol ( P < 0.05). The visualization of knee structures with 3D SRR Dixon TSE was very similar to the standard protocol, except for cartilage, tendons, and bone, which were affected by the presence of reconstruct","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"220-233"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.","authors":"Akifumi Hagiwara, Satoru Kamio, Junko Kikuta, Moto Nakaya, Wataru Uchida, Shohei Fujita, Stikov Nikola, Toshiaki Akasahi, Akihiko Wada, Koji Kamagata, Shigeki Aoki","doi":"10.1097/RLI.0000000000001120","DOIUrl":"10.1097/RLI.0000000000001120","url":null,"abstract":"<p><strong>Abstract: </strong>The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases. Age-related brain volume changes encompass a decrease in gray matter and an increase in ventricular volume, associated with cognitive decline. White matter hyperintensities, detected by FLAIR, are common and linked to cognitive impairments and increased risk of stroke and dementia. Tissue relaxometry reveals age-related changes in relaxivity, aiding the distinction between normal aging and pathological conditions. Myelin content, measurable by MRI, changes with age and is associated with cognitive and motor function alterations. Iron accumulation, detected by susceptibility-sensitive MRI, increases in certain brain regions with age, potentially contributing to neurodegenerative processes. Diffusion MRI provides detailed insights into microstructural changes such as neurite density and orientation. Neurofluid imaging, using techniques like gadolinium-based contrast agents and diffusion MRI, reveals age-related changes in cerebrospinal and interstitial fluid dynamics, crucial for brain health and waste clearance. This review offers a comprehensive overview of age-related brain changes revealed by various MRI techniques. Understanding these changes helps differentiate between normal aging and pathological conditions, aiding the development of interventions to mitigate age-related cognitive decline and other symptoms. Recent advances in machine learning and artificial intelligence have enabled novel methods for estimating brain age, offering also potential biomarkers for neurological and psychiatric disorders.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"162-174"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigative RadiologyPub Date : 2025-03-01Epub Date: 2024-10-09DOI: 10.1097/RLI.0000000000001124
Val M Runge, Johannes T Heverhagen
{"title":"Hot Topics in Diagnostic Imaging-Encompassing Advances in MR, Photon-Counting CT, and Ultrasound.","authors":"Val M Runge, Johannes T Heverhagen","doi":"10.1097/RLI.0000000000001124","DOIUrl":"10.1097/RLI.0000000000001124","url":null,"abstract":"","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"161"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigative RadiologyPub Date : 2025-03-01Epub Date: 2024-10-09DOI: 10.1097/RLI.0000000000001123
Matthias Dietzel, Giulia Vatteroni, Pascal A T Baltzer
{"title":"What Is the Added Value of DWI Compared With Structured Assessment of BI-RADS Criteria by the Kaiser Score? A Systematic Review and Meta-analysis.","authors":"Matthias Dietzel, Giulia Vatteroni, Pascal A T Baltzer","doi":"10.1097/RLI.0000000000001123","DOIUrl":"10.1097/RLI.0000000000001123","url":null,"abstract":"<p><strong>Objective: </strong>This systematic review and meta-analysis investigated the added value of DWI compared with the structured assessment of BI-RADS criteria using the Kaiser score.</p><p><strong>Materials and methods: </strong>Articles published in English until May 2024 were included. Two independent reviewers extracted data on the characteristics of studies evaluating the added value of DWI to distinguish benign from malignant breast lesions compared with structured assessment of the BI-RADS criteria. Using bivariate random-effects models, the sensitivity and specificity were calculated. I2 statistics, Deek's funnel plot asymmetry test for publication bias, and meta-regression were applied for the data analysis.</p><p><strong>Results: </strong>Five studies comprising 1005 malignant and 846 benign lesions were eligible for data synthesis. The pooled sensitivity and specificity estimates of structured BI-RADS assessment were 95.7% (95% confidence interval [CI], 92.6%-97.5%) and 68.7% (95% CI, 60.9%-75.6%), respectively. Adding DWI to the structured BI-RADS assessment achieved a pooled sensitivity of 94.4% (95% CI, 90.5%-96.7%) and a pooled specificity of 74.9% (95% CI, 68.8%-80.2%). Adding DWI to the structured BI-RADS assessment significantly changed neither the sensitivity ( P = 0.52) nor the specificity ( P = 0.20).</p><p><strong>Conclusions: </strong>This systematic review and meta-analysis revealed only a limited, statistically nonsignificant added value of DWI compared with the structured assessment of BI-RADS criteria using the Kaiser score.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"175-183"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigative RadiologyPub Date : 2025-03-01Epub Date: 2024-08-21DOI: 10.1097/RLI.0000000000001116
Chrit T W Moonen, Joseph P Kilroy, Alexander L Klibanov
{"title":"Focused Ultrasound: Noninvasive Image-Guided Therapy.","authors":"Chrit T W Moonen, Joseph P Kilroy, Alexander L Klibanov","doi":"10.1097/RLI.0000000000001116","DOIUrl":"10.1097/RLI.0000000000001116","url":null,"abstract":"<p><strong>Abstract: </strong>Invasive open surgery used to be compulsory to access tumor mass to perform excision or resection. Development of minimally invasive laparoscopic procedures followed, as well as catheter-based approaches, such as stenting, endovascular surgery, chemoembolization, brachytherapy, which minimize side effects and reduce the risks to patients. Completely noninvasive procedures bring further benefits in terms of reducing risk, procedure time, recovery time, potential of infection, or other side effects. Focusing ultrasound waves from the outside of the body specifically at the disease site has proven to be a safe noninvasive approach to localized ablative hyperthermia, mechanical ablation, and targeted drug delivery. Focused ultrasound as a medical intervention was proposed decades ago, but it only became feasible to plan, guide, monitor, and control the treatment procedures with advanced radiological imaging capabilities. The purpose of this review is to describe the imaging capabilities and approaches to perform these tasks, with the emphasis on magnetic resonance imaging and ultrasound. Some procedures already are in clinical practice, with more at the clinical trial stage. Imaging is fully integrated in the workflow and includes the following: (1) planning, with definition of the target regions and adjacent organs at risk; (2) real-time treatment monitoring via thermometry imaging, cavitation feedback, and motion control, to assure targeting and safety to adjacent normal tissues; and (3) evaluation of treatment efficacy, via assessment of ablation and physiological parameters, such as blood supply. This review also focuses on sonosensitive microparticles and nanoparticles, such as microbubbles injected in the bloodstream. They enable ultrasound energy deposition down to the microvascular level, induce vascular inflammation and shutdown, accelerate clot dissolution, and perform targeted drug delivery interventions, including focal gene delivery. Especially exciting is the ability to perform noninvasive drug delivery via opening of the blood-brain barrier at the desired areas within the brain. Overall, focused ultrasound under image guidance is rapidly developing, to become a choice noninvasive interventional radiology tool to treat disease and cure patients.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"205-219"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigative RadiologyPub Date : 2025-03-01Epub Date: 2024-10-23DOI: 10.1097/RLI.0000000000001133
Shivani Ahlawat, Neil M Kumar, Ali Ghasemi, Laura M Fayad
{"title":"Three-Dimensional Magnetic Resonance Imaging in the Musculoskeletal System: Clinical Applications and Opportunities to Improve Imaging Speed and Resolution.","authors":"Shivani Ahlawat, Neil M Kumar, Ali Ghasemi, Laura M Fayad","doi":"10.1097/RLI.0000000000001133","DOIUrl":"10.1097/RLI.0000000000001133","url":null,"abstract":"<p><strong>Abstract: </strong>Although conventional 2-dimensional magnetic resonance (MR) sequences have traditionally comprised the foundational imaging strategy for visualization of musculoskeletal anatomy and pathology, the emergence of isotropic volumetric 3-dimensional sequences offers to advance musculoskeletal evaluation with comparatively similar image quality and diagnostic performance, shorter acquisition times, and the added advantages of improved spatial resolution and multiplanar reformation capability. The purpose of this review article is to summarize the available 3-dimensional MR sequences and their role in the management of patients with musculoskeletal disorders, including sports imaging, rheumatologic conditions, peripheral nerve imaging, bone and soft tissue tumor imaging, and whole-body MR imaging.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"184-197"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Wilpert, Maximilian Frederic Russe, Jakob Weiss, Christian Voss, Stephan Rau, Ralph Strecker, Marco Reisert, Ricardo Bedin, Horst Urbach, Maxim Zaitsev, Fabian Bamberg, Alexander Rau
{"title":"Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics.","authors":"Caroline Wilpert, Maximilian Frederic Russe, Jakob Weiss, Christian Voss, Stephan Rau, Ralph Strecker, Marco Reisert, Ricardo Bedin, Horst Urbach, Maxim Zaitsev, Fabian Bamberg, Alexander Rau","doi":"10.1097/RLI.0000000000001158","DOIUrl":"https://doi.org/10.1097/RLI.0000000000001158","url":null,"abstract":"<p><strong>Objectives: </strong>Deep learning reconstruction of magnetic resonance imaging (MRI) allows to either improve image quality of accelerated sequences or to generate high-resolution data. We evaluated the interaction of conventional acceleration and Deep Resolve Boost (DRB)-based reconstruction techniques of a single-shot echo-planar imaging (ssEPI) diffusion-weighted imaging (DWI) on image quality features in cerebral 3 T brain MRI and compared it with a state-of-the-art DWI sequence.</p><p><strong>Materials and methods: </strong>In this prospective study, 24 patients received a standard of care ssEPI DWI and 5 additional adapted ssEPI DWI sequences, 3 of those with DRB reconstruction. Qualitative analysis encompassed rating of image quality, noise, sharpness, and artifacts. Quantitative analysis compared apparent diffusion coefficient (ADC) values region-wise between the different DWI sequences. Intraclass correlations, paired sampled t test, Wilcoxon signed rank test, and weighted Cohen κ were used.</p><p><strong>Results: </strong>Compared with the reference standard, the acquisition time was significantly improved in accelerated DWI from 75 seconds up to 50% (39 seconds; P < 0.001). All tested DRB-reconstructed sequences showed significantly improved image quality, sharpness, and reduced noise (P < 0.001). Highest image quality was observed for the combination of conventional acceleration and DL reconstruction. In singular slices, more artifacts were observed for DRB-reconstructed sequences (P < 0.001). While in general high consistency was found between ADC values, increasing differences in ADC values were noted with increasing acceleration and application of DRB. Falsely pathological ADCs were rarely observed near frontal poles and optic chiasm attributable to susceptibility-related artifacts due to adjacent sinuses.</p><p><strong>Conclusions: </strong>In this comparative study, we found that the combination of conventional acceleration and DRB reconstruction improves image quality and enables faster acquisition of ssEPI DWI. Nevertheless, a tradeoff between increased acceleration with risk of stronger artifacts and high-resolution with longer acquisition time needs to be considered, especially for application in cerebral MRI.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annette Schwarz, Christian Hofmann, Jannis Dickmann, Arndt Simon, Andreas Maier, Frank K Wacker, Hans-Jürgen Raatschen, Stephan Gleitz, Martina Schmidbauer
{"title":"Free-Breathing Respiratory Triggered High-Pitch Lung CT: Insights From Phantom and Patient Scans.","authors":"Annette Schwarz, Christian Hofmann, Jannis Dickmann, Arndt Simon, Andreas Maier, Frank K Wacker, Hans-Jürgen Raatschen, Stephan Gleitz, Martina Schmidbauer","doi":"10.1097/RLI.0000000000001157","DOIUrl":"10.1097/RLI.0000000000001157","url":null,"abstract":"<p><strong>Objective: </strong>Respiratory motion can affect image quality and thus affect the diagnostic accuracy of CT images by masking or mimicking relevant lung pathologies. CT examinations are often performed during deep inspiration and breath-hold to achieve optimal image quality. However, this can be challenging for certain patient groups, such as children, the elderly, or sedated patients. The study aimed to validate a dedicated triggering algorithm for initiating respiratory-triggered high-pitch computed tomography (RT-HPCT) scans in end inspiration and end expiration in complex and irregular respiratory patterns using an anthropomorphic dynamic chest phantom. Additionally, a patient study was conducted to compare the image quality and lung expansion between RT-HPCT and standard HPCT.</p><p><strong>Materials and methods: </strong>The study utilized an algorithm that processes the patient's breathing motion in real-time to determine the appropriate time to initiate a scan. This algorithm was tested on a dynamic, tissue-equivalent chest motion phantom to replicate and simulate 3-dimensional target motion using 28 breathing motion patterns taken from patient with irregular breathing. To evaluate the performance on human patients, prospective RT-HPCT was performed in 18 free-breathing patients. As a reference, unenhanced HPCT of the chest was performed in 20 patients without respiratory triggering during free-breathing. The mean CTDI was 1.73 mGy ± 0.1 mGy for HPCT and 1.68 mGy ± 0.1 mGy for RT-HPCT. For phantom tests, the deviation from the target position of the phantom inlay is known. Image quality is approximated by evaluating stationary versus moving acquisitions. For patient scans, respiratory motion artifacts and inspiration depth were analyzed using expert knowledge of lung anatomy and automated lung volume estimation. Statistical analysis was performed to compare image quality and lung volumes between conventional HPCT and RT-HPCT.</p><p><strong>Results: </strong>In phantom scans, the average deviation from the desired excursion phase was 1.6 mm ± 4.7 mm or 15% ± 24% of the phantom movement range. In patients, the overall image quality significantly improved with respiratory triggering compared with conventional HPCT ( P < 0.001). Quantitative average lung volume was 4.0 L ± 1.1 L in the RT group and 3.6 L ± 1.0 L in the control group.</p><p><strong>Conclusions: </strong>This study demonstrated the feasibility of using a patient-adaptive respiratory triggering algorithm for high-pitch lung CT in both phantom and patients. Respiratory-triggered high-pitch CT scanning significantly reduces breathing artifacts compared with conventional nontriggered free-breathing scans.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}