Anton Sheahan Quinsten, Christian Bojahr, Kai Nassenstein, Jannis Straus, Mathias Holtkamp, Luca Salhöfer, Lale Umutlu, Michael Forsting, Johannes Haubold, Yutong Wen, Judith Kohnke, Katarzyna Borys, Felix Nensa, René Hosch
{"title":"Automated Field of View Prescription for Whole-body Magnetic Resonance Imaging Using Deep Learning Based Body Region Segmentations.","authors":"Anton Sheahan Quinsten, Christian Bojahr, Kai Nassenstein, Jannis Straus, Mathias Holtkamp, Luca Salhöfer, Lale Umutlu, Michael Forsting, Johannes Haubold, Yutong Wen, Judith Kohnke, Katarzyna Borys, Felix Nensa, René Hosch","doi":"10.1097/RLI.0000000000001236","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Manual field-of-view (FoV) prescription in whole-body magnetic resonance imaging (WB-MRI) is vital for ensuring comprehensive anatomic coverage and minimising artifacts, thereby enhancing image quality. However, this procedure is time-consuming, subject to operator variability, and adversely impacts both patient comfort and workflow efficiency. To overcome these limitations, an automated system was developed and evaluated that prescribes multiple consecutive FoV stations for WB-MRI using deep-learning (DL)-based three-dimensional anatomic segmentations.</p><p><strong>Materials and methods: </strong>A total of 374 patients (mean age: 50.5 ± 18.2 y; 52% females) who underwent WB-MRI, including T2-weighted Half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE) and fast whole-body localizer (FWBL) sequences acquired during continuous table movement on a 3T MRI system, were retrospectively collected between March 2012 and January 2025. An external cohort of 10 patients, acquired on two 1.5T scanners, was utilized for generalizability testing. Complementary nnUNet-v2 models were fine-tuned to segment tissue compartments, organs, and a whole-body (WB) outline on FWBL images. From these predicted segmentations, 5 consecutive FoVs (head/neck, thorax, liver, pelvis, and spine) were generated. Segmentation accuracy was quantified by Sørensen-Dice coefficients (DSC), Precision (P), Recall (R), and Specificity (S). Clinical utility was assessed on 30 test cases by 4 blinded experts using Likert scores and a 4-way ranking against 3 radiographer prescriptions. Interrater reliability and statistical comparisons were employed using the intraclass correlation coefficient (ICC), Kendall W, Friedman, and Wilcoxon signed-rank tests.</p><p><strong>Results: </strong>Mean DSCs were 0.98 for torso (P = 0.98, R = 0.98, S = 1.00), 0.96 for head/neck (P = 0.95, R = 0.96, S = 1.00), 0.94 for abdominal cavity (P = 0.95, R = 0.94, S = 1.00), 0.90 for thoracic cavity (P = 0.90, R = 0.91, S = 1.00), 0.86 for liver (P = 0.85, R = 0.87, S = 1.00), and 0.63 for spinal cord (P = 0.64, R = 0.63, S = 1.00). The clinical utility was evidenced by assessments from 2 expert radiologists and 2 radiographers, with 98.3% and 87.5% of cases rated as clinically acceptable in the internal test data set and the external test data set. Predicted FoVs received the highest ranking in 60% of cases. They placed within the top 2 in 85.8% of cases, outperforming radiographers with 9 and 13 years of experience (P < 0.001) and matching the performance of a radiographer with 20 years of experience.</p><p><strong>Conclusions: </strong>DL-based three-dimensional anatomic segmentations enable accurate and reliable multistation FoV prescription for WB-MRI, achieving expert-level performance while significantly reducing manual workload. Automated FoV planning has the potential to standardize WB-MRI acquisition, reduce interoperator variability, and enhance workflow efficiency, thereby facilitating broader clinical adoption.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001236","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Manual field-of-view (FoV) prescription in whole-body magnetic resonance imaging (WB-MRI) is vital for ensuring comprehensive anatomic coverage and minimising artifacts, thereby enhancing image quality. However, this procedure is time-consuming, subject to operator variability, and adversely impacts both patient comfort and workflow efficiency. To overcome these limitations, an automated system was developed and evaluated that prescribes multiple consecutive FoV stations for WB-MRI using deep-learning (DL)-based three-dimensional anatomic segmentations.
Materials and methods: A total of 374 patients (mean age: 50.5 ± 18.2 y; 52% females) who underwent WB-MRI, including T2-weighted Half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE) and fast whole-body localizer (FWBL) sequences acquired during continuous table movement on a 3T MRI system, were retrospectively collected between March 2012 and January 2025. An external cohort of 10 patients, acquired on two 1.5T scanners, was utilized for generalizability testing. Complementary nnUNet-v2 models were fine-tuned to segment tissue compartments, organs, and a whole-body (WB) outline on FWBL images. From these predicted segmentations, 5 consecutive FoVs (head/neck, thorax, liver, pelvis, and spine) were generated. Segmentation accuracy was quantified by Sørensen-Dice coefficients (DSC), Precision (P), Recall (R), and Specificity (S). Clinical utility was assessed on 30 test cases by 4 blinded experts using Likert scores and a 4-way ranking against 3 radiographer prescriptions. Interrater reliability and statistical comparisons were employed using the intraclass correlation coefficient (ICC), Kendall W, Friedman, and Wilcoxon signed-rank tests.
Results: Mean DSCs were 0.98 for torso (P = 0.98, R = 0.98, S = 1.00), 0.96 for head/neck (P = 0.95, R = 0.96, S = 1.00), 0.94 for abdominal cavity (P = 0.95, R = 0.94, S = 1.00), 0.90 for thoracic cavity (P = 0.90, R = 0.91, S = 1.00), 0.86 for liver (P = 0.85, R = 0.87, S = 1.00), and 0.63 for spinal cord (P = 0.64, R = 0.63, S = 1.00). The clinical utility was evidenced by assessments from 2 expert radiologists and 2 radiographers, with 98.3% and 87.5% of cases rated as clinically acceptable in the internal test data set and the external test data set. Predicted FoVs received the highest ranking in 60% of cases. They placed within the top 2 in 85.8% of cases, outperforming radiographers with 9 and 13 years of experience (P < 0.001) and matching the performance of a radiographer with 20 years of experience.
Conclusions: DL-based three-dimensional anatomic segmentations enable accurate and reliable multistation FoV prescription for WB-MRI, achieving expert-level performance while significantly reducing manual workload. Automated FoV planning has the potential to standardize WB-MRI acquisition, reduce interoperator variability, and enhance workflow efficiency, thereby facilitating broader clinical adoption.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.