Bjarne Kerber, Falko Ensle, Jonas Kroschke, Cecilia Strappa, Anna Rita Larici, Thomas Frauenfelder, Lisa Jungblut
{"title":"Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT: Evaluation of Visual Scoring and Automated Quantification Algorithms.","authors":"Bjarne Kerber, Falko Ensle, Jonas Kroschke, Cecilia Strappa, Anna Rita Larici, Thomas Frauenfelder, Lisa Jungblut","doi":"10.1097/RLI.0000000000001128","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials.</p><p><strong>Methods: </strong>One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read. In the second step, automated emphysema quantification was performed using an established LAV algorithm with a threshold of -950 HU and a commercially available deep learning model for automated emphysema quantification. Automated estimations of emphysema extent were converted and compared with visual scoring ratings.</p><p><strong>Results: </strong>X-ray dose scans exhibited a significantly lower computed tomography dose index than low-dose scans (low-dose: 0.66 ± 0.16 mGy, x-ray dose: 0.11 ± 0.03 mGy, P < 0.001). Interreader agreement between low- and x-ray dose for visual emphysema scoring was excellent (κ = 0.83). Visual emphysema scoring consensus showed good agreement between low-dose and x-ray dose scans (κ = 0.70), with significant and strong correlation (Spearman ρ = 0.79). Although trace emphysema was underestimated in x-ray dose scans, there was no significant difference in the detection of higher-grade (mild to advanced destructive) emphysema (P = 0.125) between the 2 scan doses. Although predicted emphysema volumes on x-ray dose scans for the LAV method showed strong and the deep learning model excellent significant correlations with predictions on low-dose scans, both methods significantly overestimated emphysema volumes on lower quality scans (P < 0.001), with the deep learning model being more robust. Further, deep learning emphysema severity estimations showed higher agreement (κ = 0.65) and correlation (Spearman ρ = 0.64) with visual scoring for low-dose scans than LAV predictions (κ = 0.48, Spearman ρ = 0.45).</p><p><strong>Conclusions: </strong>The severity of emphysema can be reliably estimated using visual scoring on CT scans performed with x-ray equivalent doses on a PCD-CT. A deep learning algorithm demonstrated good agreement and strong correlation with the visual scoring method on low-dose scans. However, both the deep learning and LAV algorithms overestimated emphysema extent on x-ray dose scans. Nonetheless, x-ray equivalent radiation dose scans may revolutionize the detection and monitoring of disease in chronic obstructive pulmonary disease patients.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001128","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials.
Methods: One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read. In the second step, automated emphysema quantification was performed using an established LAV algorithm with a threshold of -950 HU and a commercially available deep learning model for automated emphysema quantification. Automated estimations of emphysema extent were converted and compared with visual scoring ratings.
Results: X-ray dose scans exhibited a significantly lower computed tomography dose index than low-dose scans (low-dose: 0.66 ± 0.16 mGy, x-ray dose: 0.11 ± 0.03 mGy, P < 0.001). Interreader agreement between low- and x-ray dose for visual emphysema scoring was excellent (κ = 0.83). Visual emphysema scoring consensus showed good agreement between low-dose and x-ray dose scans (κ = 0.70), with significant and strong correlation (Spearman ρ = 0.79). Although trace emphysema was underestimated in x-ray dose scans, there was no significant difference in the detection of higher-grade (mild to advanced destructive) emphysema (P = 0.125) between the 2 scan doses. Although predicted emphysema volumes on x-ray dose scans for the LAV method showed strong and the deep learning model excellent significant correlations with predictions on low-dose scans, both methods significantly overestimated emphysema volumes on lower quality scans (P < 0.001), with the deep learning model being more robust. Further, deep learning emphysema severity estimations showed higher agreement (κ = 0.65) and correlation (Spearman ρ = 0.64) with visual scoring for low-dose scans than LAV predictions (κ = 0.48, Spearman ρ = 0.45).
Conclusions: The severity of emphysema can be reliably estimated using visual scoring on CT scans performed with x-ray equivalent doses on a PCD-CT. A deep learning algorithm demonstrated good agreement and strong correlation with the visual scoring method on low-dose scans. However, both the deep learning and LAV algorithms overestimated emphysema extent on x-ray dose scans. Nonetheless, x-ray equivalent radiation dose scans may revolutionize the detection and monitoring of disease in chronic obstructive pulmonary disease patients.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.