International review of cell and molecular biology最新文献

筛选
英文 中文
Importance of targeting various cell signaling pathways in solid cancers. 针对实体瘤的各种细胞信号通路的重要性。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2024-02-24 DOI: 10.1016/bs.ircmb.2024.02.002
Chandrayee Ghosh, Jiangnan Hu
{"title":"Importance of targeting various cell signaling pathways in solid cancers.","authors":"Chandrayee Ghosh, Jiangnan Hu","doi":"10.1016/bs.ircmb.2024.02.002","DOIUrl":"10.1016/bs.ircmb.2024.02.002","url":null,"abstract":"<p><p>Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammatory breast cancer biomarkers and biology. 炎症性乳腺癌生物标志物和生物学。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2024-02-05 DOI: 10.1016/bs.ircmb.2023.11.002
Kenneth L van Golen
{"title":"Inflammatory breast cancer biomarkers and biology.","authors":"Kenneth L van Golen","doi":"10.1016/bs.ircmb.2023.11.002","DOIUrl":"https://doi.org/10.1016/bs.ircmb.2023.11.002","url":null,"abstract":"<p><p>Inflammatory breast cancer (IBC) is a unique breast cancer with a highly virulent course and low 5- and 10-year survival rates. Even though it only accounts for 1-5% of breast cancers it is estimated to account for 10% of breast cancer deaths annually in the United States. The accuracy of diagnosis and classification of this unique cancer is a major concern within the medical community. Early molecular and biological studies incidentally included IBC samples with other conventional breast cancers and were not informative as to the unique nature of the disease. Subsequent molecular studies that focused specifically on IBC demonstrated that IBC has a unique biology different from other forms of breast cancer. Additionally, a handful of unique signature genes that are hallmarks of IBC have also been suggested. Further understanding of IBC biology can help with diagnosis and treatment of the disease. The current article reviews the history and highlights of IBC studies.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune modulation during anti-cancer radio(immuno)therapy. 抗癌放射(免疫)治疗期间的免疫调节。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2023-07-26 DOI: 10.1016/bs.ircmb.2023.05.008
Teresa Irianto, Udo S Gaipl, Michael Rückert
{"title":"Immune modulation during anti-cancer radio(immuno)therapy.","authors":"Teresa Irianto, Udo S Gaipl, Michael Rückert","doi":"10.1016/bs.ircmb.2023.05.008","DOIUrl":"10.1016/bs.ircmb.2023.05.008","url":null,"abstract":"<p><p>Cancer can affect all human organs and tissues and ranks as a prominent cause of death as well as an obstruction to increasing life expectancy. A notable breakthrough in oncology has been the inclusion of the immune system in fighting cancer, potentially prolonging life and providing long-term benefits. The concept of \"immunotherapy\" has been discussed from the 19th and early 20th centuries by Wilhelm Busch, William B. Coley and Paul Ehrlich. This involves distinct approaches, including vaccines, non-specific cytokines and adoptive cell therapies. However, despite the advances made in recent years, questions on how to select the best therapeutic options or how to select the best combinations to improve clinical outcomes are still relevant for scientists and clinicians. More than half of cancer patients receive radiotherapy (RT) as part of their treatment. With the advances in RT and immunotherapy approaches, it is reasonable to consider how to enhance immunotherapy with radiation and vice versa, and to investigate whether combinations of these therapies would be beneficial. In this chapter, we will discuss how the immune system responds to cancer cells and different cancer therapies with a focus on combination of RT and immunotherapy (radioimmunotherapy, RIT).</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetics as a determinant of radiation response in cancer. 表观遗传学是癌症辐射反应的决定因素。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2023-09-16 DOI: 10.1016/bs.ircmb.2023.07.008
Elena Arechaga-Ocampo
{"title":"Epigenetics as a determinant of radiation response in cancer.","authors":"Elena Arechaga-Ocampo","doi":"10.1016/bs.ircmb.2023.07.008","DOIUrl":"10.1016/bs.ircmb.2023.07.008","url":null,"abstract":"<p><p>Radiation therapy is a cornerstone of modern cancer treatment. Treatment is based on depositing focal radiation to the tumor to inhibit cell growth, proliferation and metastasis, and to promote the death of cancer cells. In addition, radiation also affects non-tumor cells in the tumor microenvironmental (TME). Radiation resistance of the tumor cells is the most common cause of treatment failure, allowing survival of cancer cell and subsequent tumor growing. Molecular radioresistance comprises genetic and epigenetic characteristics inherent in cancer cells, or characteristics acquired after exposure to radiation. Furthermore, cancer stem cells (CSCs) and non-tumor cells into the TME as stromal and immune cells have a role in promoting and maintaining radioresistant tumor phenotypes. Different regulatory molecules and pathways distinctive of radiation resistance include DNA repair, survival signaling and cell death pathways. Epigenetic mechanisms are one of the most relevant events that occur after radiotherapy to regulate the expression and function of key genes and proteins in the differential radiation-response. This article reviews recent data on the main molecular mechanisms and signaling pathways related to the biological response to radiotherapy in cancer; highlighting the epigenetic control exerted by DNA methylation, histone marks, chromatin remodeling and m6A RNA methylation on gene expression and activation of signaling pathways related to radiation therapy response.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Overview of the Unfolded Protein Response (UPR) and Autophagy Pathways in Human Viral Oncogenesis. 人类病毒肿瘤发生过程中的折叠蛋白反应(UPR)和自噬途径概述。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2024-02-22 DOI: 10.1016/bs.ircmb.2024.01.004
Shovan Dutta, Anirban Ganguly, Sounak Ghosh Roy
{"title":"An Overview of the Unfolded Protein Response (UPR) and Autophagy Pathways in Human Viral Oncogenesis.","authors":"Shovan Dutta, Anirban Ganguly, Sounak Ghosh Roy","doi":"10.1016/bs.ircmb.2024.01.004","DOIUrl":"10.1016/bs.ircmb.2024.01.004","url":null,"abstract":"<p><p>Autophagy and Unfolded Protein Response (UPR) can be regarded as the safe keepers of cells exposed to intense stress. Autophagy maintains cellular homeostasis, ensuring the removal of foreign particles and misfolded macromolecules from the cytoplasm and facilitating the return of the building blocks into the system. On the other hand, UPR serves as a shock response to prolonged stress, especially Endoplasmic Reticulum Stress (ERS), which also includes the accumulation of misfolded proteins in the ER. Since one of the many effects of viral infection on the host cell machinery is the hijacking of the host translational system, which leaves in its wake a plethora of misfolded proteins in the ER, it is perhaps not surprising that UPR and autophagy are common occurrences in infected cells, tissues, and patient samples. In this book chapter, we try to emphasize how UPR, and autophagy are significant in infections caused by six major oncolytic viruses-Epstein-Barr (EBV), Human Papilloma Virus (HPV), Human Immunodeficiency Virus (HIV), Human Herpesvirus-8 (HHV-8), Human T-cell Lymphotropic Virus (HTLV-1), and Hepatitis B Virus (HBV). Here, we document how whole-virus infection or overexpression of individual viral proteins in vitro and in vivo models can regulate the different branches of UPR and the various stages of macro autophagy. As is true with other viral infections, the relationship is complicated because the same virus (or the viral protein) exerts different effects on UPR and Autophagy. The nature of this response is determined by the cell types, or in some cases, the presence of diverse extracellular stimuli. The vice versa is equally valid, i.e., UPR and autophagy exhibit both anti-tumor and pro-tumor properties based on the cell type and other factors like concentrations of different metabolites. Thus, we have tried to coherently summarize the existing knowledge, the crux of which can hopefully be harnessed to design vaccines and therapies targeted at viral carcinogenesis.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation deconvolution of transcriptomic data to investigate the tumor microenvironment. 下一代转录组数据解卷积研究肿瘤微环境。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2023-06-21 DOI: 10.1016/bs.ircmb.2023.05.002
Lorenzo Merotto, Maria Zopoglou, Constantin Zackl, Francesca Finotello
{"title":"Next-generation deconvolution of transcriptomic data to investigate the tumor microenvironment.","authors":"Lorenzo Merotto, Maria Zopoglou, Constantin Zackl, Francesca Finotello","doi":"10.1016/bs.ircmb.2023.05.002","DOIUrl":"10.1016/bs.ircmb.2023.05.002","url":null,"abstract":"<p><p>Methods for in silico deconvolution of bulk transcriptomics can characterize the cellular composition of the tumor microenvironment, quantifying the abundance of cell types associated with patients' prognosis and response to therapy. While first-generation deconvolution methods rely on precomputed, transcriptional signatures of a handful of cell types, second-generation methods can be trained with single-cell data to disentangle more fine-grained cell phenotypes and states. These novel approaches can also be applied to spatial transcriptomic data to reveal the spatial organization of tumors. In this review, we describe state-of-the-art deconvolution methods (first-generation, second-generation, and spatial) which can be used to investigate the tumor microenvironment, discussing their strengths and limitations. We conclude with an outlook on the challenges that need to be overcome to unlock the full potential of next-generation deconvolution for oncology and the life sciences.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advancements in tumour microenvironment landscaping for target selection and response prediction in immune checkpoint therapies achieved through spatial protein multiplexing analysis. 通过空间蛋白复用分析实现免疫检查点疗法的靶点选择和反应预测的肿瘤微环境景观设计的最新进展。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2023-06-14 DOI: 10.1016/bs.ircmb.2023.05.009
Madhavi Dipak Andhari, Asier Antoranz, Frederik De Smet, Francesca Maria Bosisio
{"title":"Recent advancements in tumour microenvironment landscaping for target selection and response prediction in immune checkpoint therapies achieved through spatial protein multiplexing analysis.","authors":"Madhavi Dipak Andhari, Asier Antoranz, Frederik De Smet, Francesca Maria Bosisio","doi":"10.1016/bs.ircmb.2023.05.009","DOIUrl":"10.1016/bs.ircmb.2023.05.009","url":null,"abstract":"<p><p>Immune checkpoint therapies have significantly advanced cancer treatment. Nevertheless, the high costs and potential adverse effects associated with these therapies highlight the need for better predictive biomarkers to identify patients who are most likely to benefit from treatment. Unfortunately, the existing biomarkers are insufficient to identify such patients. New high-dimensional spatial technologies have emerged as a valuable tool for discovering novel biomarkers by analysing multiple protein markers at a single-cell resolution in tissue samples. These technologies provide a more comprehensive map of tissue composition, cell functionality, and interactions between different cell types in the tumour microenvironment. In this review, we provide an overview of how spatial protein-based multiplexing technologies have fuelled biomarker discovery and advanced the field of immunotherapy. In particular, we will focus on how these technologies contributed to (i) characterise the tumour microenvironment, (ii) understand the role of tumour heterogeneity, (iii) study the interplay of the immune microenvironment and tumour progression, (iv) discover biomarkers for immune checkpoint therapies (v) suggest novel therapeutic strategies.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression. 胃肠道癌症的新趋势:针对癌变和肿瘤进展的发展途径。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2024-01-15 DOI: 10.1016/bs.ircmb.2023.11.006
Afza Ahmad, Rohit Kumar Tiwari, Saleha Siddiqui, Muskan Chadha, Ratnakar Shukla, Vivek Srivastava
{"title":"Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression.","authors":"Afza Ahmad, Rohit Kumar Tiwari, Saleha Siddiqui, Muskan Chadha, Ratnakar Shukla, Vivek Srivastava","doi":"10.1016/bs.ircmb.2023.11.006","DOIUrl":"10.1016/bs.ircmb.2023.11.006","url":null,"abstract":"<p><p>Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic inhibitors for cancer treatment. 用于治疗癌症的表观遗传抑制剂。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2023-07-18 DOI: 10.1016/bs.ircmb.2023.06.003
Hongchao Yuan, Yuanjun Lu, Yibin Feng, Ning Wang
{"title":"Epigenetic inhibitors for cancer treatment.","authors":"Hongchao Yuan, Yuanjun Lu, Yibin Feng, Ning Wang","doi":"10.1016/bs.ircmb.2023.06.003","DOIUrl":"10.1016/bs.ircmb.2023.06.003","url":null,"abstract":"<p><p>Epigenetics is a heritable and reversible modification that occurs independent of the alteration of primary DNA sequence but remarkably affects genetic expression. Aberrant epigenetic regulators are frequently observed in cancer progression not only influencing the behavior of tumor cells but also the tumor-associated microenvironment (TME). Increasing evidence has shown their great potential as biomarkers to predict clinical outcomes and chemoresistance. Hence, targeting the deregulated epigenetic regulators would be a compelling strategy for cancer treatment. So far, current epigenetic drugs have shown promising efficacy in both preclinical trials and clinical treatment of cancer, which encourages research discoveries on the development of novel epigenetic inhibitors either from natural compounds or artificial synthesis. However, only a few have been approved by the FDA, and more effort needs to be put into the related research. This chapter will update the applications and latest progress of epigenetic inhibitors in cancer treatment and provide prospects for the future development of epigenetic drugs.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic potential of hedgehog signaling in advanced cancer types. 刺猬信号在晚期癌症类型中的治疗潜力。
3区 生物学
International review of cell and molecular biology Pub Date : 2024-01-01 Epub Date: 2024-03-08 DOI: 10.1016/bs.ircmb.2024.01.003
Richa Singh, Anindita Ray
{"title":"Therapeutic potential of hedgehog signaling in advanced cancer types.","authors":"Richa Singh, Anindita Ray","doi":"10.1016/bs.ircmb.2024.01.003","DOIUrl":"10.1016/bs.ircmb.2024.01.003","url":null,"abstract":"<p><p>In this chapter, we have made an attempt to elucidate the relevance of hedgehog signaling pathway in tumorigenesis. Here, we have described different types of hedgehog signaling (canonical and non-canonical) with emphasis on the different mechanisms (mutation-driven, autocrine, paracrine and reverse paracrine) it adopts during tumorigenesis. We have discussed the role of hedgehog signaling in regulating cell proliferation, invasion and epithelial-to-mesenchymal transition in both local and advanced cancer types, as reported in different studies based on preclinical and clinical models. We have specifically addressed the role of hedgehog signaling in aggressive neuroendocrine tumors as well. We have also elaborated on the studies showing therapeutic relevance of the inhibitors of hedgehog signaling in cancer. Evidence of the crosstalk of hedgehog signaling components with other signaling pathways and treatment resistance due to tumor heterogeneity have also been briefly discussed. Together, we have tried to put forward a compilation of the studies on therapeutic potential of hedgehog signaling in various cancers, specifically aggressive tumor types with a perspective into what is lacking and demands further investigation.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信