Youbin Zhang, David Scholten, Wenan Qiang, Leonidas C Platanias, William J Gradishar, Shana O Kelley, Huiping Liu
{"title":"Circulation tumor cell isolation and enrichment technologies.","authors":"Youbin Zhang, David Scholten, Wenan Qiang, Leonidas C Platanias, William J Gradishar, Shana O Kelley, Huiping Liu","doi":"10.1016/bs.ircmb.2025.01.009","DOIUrl":null,"url":null,"abstract":"<p><p>During cancer metastasis, tumor cells migrate from the primary tumor site and spread to distant tissue or organs through the circulatory system of the body. While it is challenging to track metastatic tumor cells, circulating tumor cells (CTCs) via liquid biopsy provide a unique and important opportunity for longitudinal monitoring of residual cancer diseases and progression, showing great potential to facilitate precision medicine in cancer patients. The enumeration and characterization of CTCs represent prognostic and predictive biomarkers, which can be used to monitor the response to and efficacy of various therapies. Along with molecular and cellular features of CTCs, this data can inform the detection of early micro-metastases and assess progression of advanced disease in a more sensitive manner than traditional imaging modalities, serving as a complementary approach with added value. Nevertheless, comprehensive multiomic analyses of CTCs at inter-cellular (cluster), single-cell, and subcellular levels to elucidate relevant CTC cancer biology, tumor immune ecosystem biology, and clinical outcomes have yet to be achieved, demanding multidisciplinary collaboration to advance the field. Complementary to the published chapter on multiomic analyses and functional properties of CTCs, this chapter summarizes key methods and integrated strategies in CTC isolation, highlighting an accelerated evolution in high-throughput analysis of CTCs.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":"392 ","pages":"119-149"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2025.01.009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
During cancer metastasis, tumor cells migrate from the primary tumor site and spread to distant tissue or organs through the circulatory system of the body. While it is challenging to track metastatic tumor cells, circulating tumor cells (CTCs) via liquid biopsy provide a unique and important opportunity for longitudinal monitoring of residual cancer diseases and progression, showing great potential to facilitate precision medicine in cancer patients. The enumeration and characterization of CTCs represent prognostic and predictive biomarkers, which can be used to monitor the response to and efficacy of various therapies. Along with molecular and cellular features of CTCs, this data can inform the detection of early micro-metastases and assess progression of advanced disease in a more sensitive manner than traditional imaging modalities, serving as a complementary approach with added value. Nevertheless, comprehensive multiomic analyses of CTCs at inter-cellular (cluster), single-cell, and subcellular levels to elucidate relevant CTC cancer biology, tumor immune ecosystem biology, and clinical outcomes have yet to be achieved, demanding multidisciplinary collaboration to advance the field. Complementary to the published chapter on multiomic analyses and functional properties of CTCs, this chapter summarizes key methods and integrated strategies in CTC isolation, highlighting an accelerated evolution in high-throughput analysis of CTCs.
期刊介绍:
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.