{"title":"Indoleamine 2, 3-Dioxygenase: A Professional Immunomodulator and Its Potential Functions in Immune Related Diseases.","authors":"Fahimeh Heidari, Amin Ramezani, Nasrollah Erfani, Mahboobeh Razmkhah","doi":"10.1080/08830185.2020.1836176","DOIUrl":"https://doi.org/10.1080/08830185.2020.1836176","url":null,"abstract":"<p><p>Indoleamine 2, 3-dioxygenase (IDO) as an intracellular cytosolic enzyme converts tryptophan (Trp) to <i>N</i>-formyl kynurenine which leads to proinflammatory T-cell apoptosis and prevention of immune cells maturation via decreasing the level of cellular energy. Trp catabolism products such as kynurenine increase the recruitment of regulatory T cells and induce immune tolerance in dendritic cells. IDO expression can locally suppress immunity in the tumor microenvironment and tumor progression actively recruits IDO expressing cells in tumor-draining lymph nodes. Also, tumor infiltrating Tregs' activity leads to IDO expression in the tumor microenvironment. In this review, we described the immunomodulatory function of IDO and IDO-based therapeutic strategies for immune related diseases. According to positive-feedback loop between Tregs and IDO in the tumor microenvironment, IDO can be targeted as a promising immunostimulatory approach for immunotherapy of cancer. However, several studies revealed controversial consequences for influences of IDO in immunity. Considering the common concept, IDO1 and also IDO2 repress the function of T lymphocytes, while inactivation of IDO results in aggravation of some autoimmune diseases. Eventually, the extensive evaluation of IDO function in immunomodulatory procedure can help achieve IDO inhibitors as optimal drugs to inhibit tumor growth without motivating autoimmunity.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 3","pages":"346-363"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1836176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38645052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Mirzakhani, Mehdi Shahbazi, Sara Shamdani, Sina Naserian, Mousa Mohammadnia-Afrouzi
{"title":"Innate immunity: Trained immunity and innate allorecognition against the allograft.","authors":"Mohammad Mirzakhani, Mehdi Shahbazi, Sara Shamdani, Sina Naserian, Mousa Mohammadnia-Afrouzi","doi":"10.1080/08830185.2021.1921175","DOIUrl":"https://doi.org/10.1080/08830185.2021.1921175","url":null,"abstract":"<p><p>The immune system response of transplant recipients is the main cause of allograft rejection; therefore, its suppression seems crucial. Nevertheless, immunosuppressive agents are largely ineffective against innate immune response. Innate immunity is immediately activated after transplantation and contribute to allograft inflammation and rejection. In this regard, understanding the mechanism of activation and targeting the components of innate immunity could improve allograft survival time. In this review, we discuss two scenarios in the innate immunity, i.e., danger and allogeneic signals in the context of both allogeneic and syngeneic graft. Moreover, the mechanisms of innate allorecognition (i.e., signal regulatory protein α-CD47 and paired immunoglobulin-like receptors-MHC I axis) are described, which can improve our clinical decisions to use a better therapeutic strategy.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 2","pages":"275-282"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2021.1921175","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38875926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Yin and yang of immunological memory in controlling infections: Overriding self defence mechanisms.","authors":"Roshan Kumar Roy, Rakhi Yadav, Aklank Jain, Vishwas Tripathi, Manju Jain, Sandhya Singh, Hridayesh Prakash","doi":"10.1080/08830185.2021.1912037","DOIUrl":"https://doi.org/10.1080/08830185.2021.1912037","url":null,"abstract":"<p><p>Immunological memory is critical for host immunity and decisive for individual to respond exponentially to previously encountered infection. Both T and B cell memory are known to orchestrate immunological memory with their central and effector memory arms contributing in prolonged immunity/defence mechanisms of host. While central memory helps in maintaining prolonged immunity for a particular infection, effector memory helps in keeping local/seasonal infection in control. In addition to this, generation of long-lived plasma cells is pivotal for generating neutralizing antibodies which can enhance recall and B cell memory to control re-infection. In view of this, scaling up memory response is one of the major objectives for the expected outcome of vaccination. In this line, this review deals with the significance of memory cells, molecular pathways of their development, maintenance, epigenetic regulation and negative regulation in various infections. We have also highlighted the significance of both T and B cell memory responses in the vaccination approaches against range of infections which is not fully explored so far.[Box: see text].</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 2","pages":"240-252"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2021.1912037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38893373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immune metabolism: a bridge of dendritic cells function.","authors":"Yuting Sun, Liyu Zhou, Weikai Chen, Linhui Zhang, Hongbo Zeng, Yunxia Sun, Jun Long, Dongping Yuan","doi":"10.1080/08830185.2021.1897124","DOIUrl":"https://doi.org/10.1080/08830185.2021.1897124","url":null,"abstract":"<p><p>An increasing number of researches have shown that cell metabolism regulates cell function. Dendritic cells (DCs), a professional antigen presenting cells, connect innate and adaptive immune responses. The preference of DCs for sugar or lipid affects its phenotypes and functions. In many diseases such as atherosclerosis (AS), diabetes mellitus and tumor, altered glucose or lipid level in microenvironment makes DCs exert ineffective or opposite immune roles, which accelerates the development of these diseases. In this article, we review the metabolism pathways of glucose and cholesterol in DCs, and the effects of metabolic changes on the phenotype and function of DCs. In addition, we discuss the effects of changes in glucose and lipid levels on DCs in the context of different diseases for better understanding the relationship between DCs and diseases. The immune metabolism of DCs may be a potential intervention link to treat metabolic-related immune diseases.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 3","pages":"313-325"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2021.1897124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25538608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancer and immunity: who is shaping whom?","authors":"Himanshu Kumar","doi":"10.1080/08830185.2021.1946300","DOIUrl":"https://doi.org/10.1080/08830185.2021.1946300","url":null,"abstract":"A disease caused by uncontrolled cell division, known as cancer, is a complex multifactorial state involving multiple intrinsic and extrinsic factors in development. The host immune system plays a crucial role in the surveillance of cancer or tumor cells. Various cells in the immune system continuously scan for these modified cells and eliminate them. The host immune system broadly consists of two major systems, the innate and the adaptive immune system. Type I interferons and natural killer (NK) cells are components of the innate immune system that control cancerous cells through their antiproliferative and proapoptotic properties and through direct killing, respectively. Adaptive immune components such as subset of CD4+ (helper) and CD8+ (cytotoxic) T cells and type II interferons restrict the growth of cancerous cells. On another hand, the cancerous tissue and its microenvironment skews normal regulatory T (Treg) cells to become cancer-derived Treg cells, which has conspicuous suppressive effects on antitumor cytotoxic T cells. Furthermore, the suppressive effects are enhanced or maintained by the induction of various cytokines such as IL-10 and TGF-beta. All these responses make cancerous cells resistant to apoptosis and promote anticancer immune evasion and establish cancer development. This issue of International Reviews of Immunology focuses on extrinsic and intrinsic oncogenic and anticancer factors (Figure 1). Cytokines or interleukins (ILs) are proteins produced by immune cells. These proteins mediate various immunological processes such as inflammation, recruitment and movement of immune cells, regulation of immune responses, and so on. IL-27 is one of the cytokines produced by antigen-presenting cells (dendritic cells and macrophages) and has pleotropic effects on innate and adaptive immunity. IL-27 acts on neutrophils, eosinophils, mast cells, and natural killer cells and involved in fighting during bacterial, viral and parasite infection. It also acts on specialized adaptive immune cells such as subsets of B and T cells. The first review article in this issue by Beizavi et al. discusses the biology of IL-27 and its influence during cancer through various immune cells [1]. The article will be of interest to researchers working in oncology, immunology and translational oncoimmunology (Figure 1). The human leukocyte antigen (HLA)-G plays an important role in immune tolerance and maternal-fetal tolerance during the gestation period and it is expressed on fetus-derived placental cells. HLA-G shows high similarity with the HLA I gene. This gene also expresses on different cancerous cells as a neocancer antigen, particularly in the advanced stages of various cancers, and promotes cancer cell survival and development of cancer through its immunosuppressive activity. It has been shown that HLA-G is a potential target for immunotherapy. The second review article in this issue by Marlatta et al. analyzes HLA-G in malignant melanomas and its pr","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"40 5","pages":"317-318"},"PeriodicalIF":5.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2021.1946300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39202375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuyang Hou, Yuntong Liu, Shu Liang, Ru Ding, Shuqian Mo, Dongmei Yan, Dong Li
{"title":"The novel target:exosoms derived from M2 macrophage.","authors":"Yuyang Hou, Yuntong Liu, Shu Liang, Ru Ding, Shuqian Mo, Dongmei Yan, Dong Li","doi":"10.1080/08830185.2020.1800687","DOIUrl":"https://doi.org/10.1080/08830185.2020.1800687","url":null,"abstract":"<p><p>More and more exosome-based therapeutics are being developed with advances in nanotechnology and precision medicine. Exosome is a kind of tiny vesicles with a bilayer of phospholipids, which can transfer biological macromolecules to recipients to influence the biological process. M2 macrophages are closely related to the occurrence and development of serious diseases such as tumor. In addition to the traditional concept of macrophage functions such as opsonization, secretion of cytokines and other soluble factors, some studies have found that the exosome derived from M2 macrophages can influence the development of disease by carrying microRNA, long noncodingRNA and functional proteins to regulate target gene expression as well as related proteins synthesis recently. Here, we outlined the biogenesis of the exosome and its biological functions in disease. Then we focused on elucidating the effects of the exosome derived from M2 macrophages on several diseases and its mechanisms. Finally, we discussed the appropriateness and inappropriateness in existing potential applications based on exosomes and macrophages.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"40 3","pages":"183-196"},"PeriodicalIF":5.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1800687","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38263276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberta Romano, Giuliana Giardino, Emilia Cirillo, Rosaria Prencipe, Claudio Pignata
{"title":"Complement system network in cell physiology and in human diseases.","authors":"Roberta Romano, Giuliana Giardino, Emilia Cirillo, Rosaria Prencipe, Claudio Pignata","doi":"10.1080/08830185.2020.1833877","DOIUrl":"https://doi.org/10.1080/08830185.2020.1833877","url":null,"abstract":"<p><p>The complement system is a multi-functional system representing the first line host defense against pathogens in innate immune response, through three different pathways. Impairment of its function, consisting in deficiency or excessive deregulated activation, may lead to severe systemic infections or autoimmune disorders. These diseases may be inherited or acquired. Despite many diagnostic tools are currently available, ranging from traditional, such as hemolytic or ELISA based assays, to innovative ones, like next generation sequencing techniques, these diseases are often not recognized. As for therapeutic aspects, strategies based on the use of targeted drugs are now widespread. The aim of this review is to present an updated overview of complement system pathophysiology, clinical implications of its dysfunction and to summarize diagnostic and therapeutic approaches.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"40 3","pages":"159-170"},"PeriodicalIF":5.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1833877","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38494556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions.","authors":"Vijay Kumar","doi":"10.1080/08830185.2021.1895145","DOIUrl":"https://doi.org/10.1080/08830185.2021.1895145","url":null,"abstract":"<p><p>The inflammatory immune response has evolved to protect the host from different pathogens, allergens, and endogenous death or damage-associated molecular patterns. Both innate and adaptive immune components are crucial in inducing an inflammatory immune response depending on the stimulus type and its duration of exposure or the activation of the primary innate immune response. As the source of inflammation is removed, the aggravated immune response comes to its homeostatic level. However, the failure of the inflammatory immune response to subside to its normal level generates chronic inflammatory conditions, including autoimmune diseases and cancer. Innate lymphoid cells (ILCs) are newly discovered innate immune cells, which are present in abundance at mucosal surfaces, including lungs, gastrointestinal tract, and reproductive tract. Also, they are present in peripheral blood circulation, skin, and lymph nodes. They play a crucial role in generating the pro-inflammatory immune response during diverse conditions. On the other hand, adaptive immune cells, including different types of T and B cells are major players in the pathogenesis of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, etc.) and cancers. Thus the article is designed to discuss the immunological role of different ILCs and their interaction with adaptive immune cells in maintaining the immune homeostasis, and during inflammatory autoimmune diseases along with other inflammatory conditions (excluding pathogen-induced inflammation), including cancer, graft-versus-host diseases, and human pregnancy.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"40 3","pages":"217-251"},"PeriodicalIF":5.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2021.1895145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25501255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HLA-G expression in melanomas.","authors":"Stefano Marletta, Ilaria Girolami, Enrico Munari, Liron Pantanowitz, Riccardo Bernasconi, Evelin Torresani, Matteo Brunelli, Albino Eccher","doi":"10.1080/08830185.2020.1869732","DOIUrl":"https://doi.org/10.1080/08830185.2020.1869732","url":null,"abstract":"<p><strong>Objective: </strong>Human leukocyte antigen G (HLA-G) is a non-classical HLA class I molecule involved in inducing tolerance at the feto-maternal interface and in escape of immune response by tumor cells. The aim of the study is to review the published literature on the expression of HLA-G in malignant melanomas and its clinicopathological and prognostic correlates.</p><p><strong>Methods: </strong>A systematic search was carried out in electronic databases. Studies dealing with HLA-G expression in surgically-removed human samples were retrieved and analyzed.</p><p><strong>Results: </strong>Of 1737 retrieved articles, 16 were included. The main themes regarded HLA-G expression in malignant melanocytic lesions, assessed by immunohistochemistry (IHC), soluble or molecular techniques, and its relationship with clinicopathological features, such as tumor thickness and malignant behavior. Overall significant HLA-G expression was found in 460/843 tumors (55%), and specifically in 251/556 melanomas (45%) evaluated with IHC, in 208/250 cases (83%) examined with soluble methods and in 13/23 melanoma lesions (57%) tested with polymerase chain reaction. Despite the correlation with parameters indicating an aggressive behavior, no studies demonstrated any prognostic value of HLA-G expression. Furthermore, uveal melanomas were constantly negative for this biomarker.</p><p><strong>Conclusion: </strong>Overall, published data indicate that while HLA-G is involved in the interactions between melanomas and the immune system, it is unlikely to be the only factor to play such a role, therefore making it difficult to designate it as a prognostically relevant molecule. Evidence further suggests that HLA-G is not implicated in the immunobiology of uveal melanomas.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"40 5","pages":"330-343"},"PeriodicalIF":5.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1869732","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38805224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How could we forget immunometabolism in SARS-CoV2 infection or COVID-19?","authors":"Vijay Kumar","doi":"10.1080/08830185.2020.1840567","DOIUrl":"https://doi.org/10.1080/08830185.2020.1840567","url":null,"abstract":"<p><p>SARS-CoV2 infection or COVID-19 has created panic around the world since its first origin in December 2019 in Wuhan city, China. The COVID-19 pandemic has infected more than 46.4 million people, with 1,199,727 deaths. The immune system plays a crucial role in the severity of COVID-19 and the development of pneumonia-induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Along with providing protection, both innate and T cell-based adaptive immune response dysregulate during severe SARS-CoV2 infection. This dysregulation is more pronounced in older population and patients with comorbidities (Diabetes, hypertension, obesity, other pulmonary and autoimmune diseases). However, COVID-19 patients develop protective antibodies (Abs) against SARS-CoV2, but they do not long for last. The induction of the immune response against the pathogen also requires metabolic energy that generates through the process of immunometabolism. The change in the metabolic stage of immune cells from homeostasis to an inflammatory or infectious environment is called immunometabolic reprogramming. The article describes the cellular immunology (macrophages, T cells, B cells, dendritic cells, NK cells and pulmonary epithelial cells (PEC) and vascular endothelial cells) and the associated immune response during COVID-19. Immunometabolism may serve as a cell-specific therapeutic approach to target COVID-19.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"40 1-2","pages":"72-107"},"PeriodicalIF":5.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1840567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38571854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}