Nada J Habeichi, Cynthia Tannous, Andriy Yabluchanskiy, Raffaele Altara, Mathias Mericskay, George W Booz, Fouad A Zouein
{"title":"Insights into the modulation of the interferon response and NAD<sup>+</sup> in the context of COVID-19.","authors":"Nada J Habeichi, Cynthia Tannous, Andriy Yabluchanskiy, Raffaele Altara, Mathias Mericskay, George W Booz, Fouad A Zouein","doi":"10.1080/08830185.2021.1961768","DOIUrl":"https://doi.org/10.1080/08830185.2021.1961768","url":null,"abstract":"<p><p>The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in dramatic worldwide mortality. Along with developing vaccines, the medical profession is exploring new strategies to curb this pandemic. A better understanding of the molecular consequences of SARS-CoV-2 cellular infection could lead to more effective and safer treatments. This review discusses the potential underlying impact of SARS-CoV-2 in modulating interferon (IFN) secretion and in causing mitochondrial NAD<sup>+</sup> depletion that could be directly linked to COVID-19's deadly manifestations. What is known or surmised about an imbalanced innate immune response and mitochondrial dysfunction post-SARS-CoV-2 infection, and the potential benefits of well-timed IFN treatments and NAD<sup>+</sup> boosting therapies in the context of the COVID-19 pandemic are discussed.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 4","pages":"464-474"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9912328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vijay Kumar, Sonia Kiran, Santosh Kumar, Udai P Singh
{"title":"Extracellular vesicles in obesity and its associated inflammation.","authors":"Vijay Kumar, Sonia Kiran, Santosh Kumar, Udai P Singh","doi":"10.1080/08830185.2021.1964497","DOIUrl":"https://doi.org/10.1080/08830185.2021.1964497","url":null,"abstract":"<p><p>Obesity is characterized by low-grade, chronic inflammation, which promotes insulin resistance and diabetes. Obesity can lead to the development and progression of many autoimmune diseases, including inflammatory bowel disease, psoriasis, psoriatic arthritis, rheumatoid arthritis, thyroid autoimmunity, and type 1 diabetes mellitus (T1DM). These diseases result from an alteration of self-tolerance by promoting pro-inflammatory immune response by lowering numbers of regulatory T cells (<i>T</i><sub>regs</sub>), increasing Th1 and Th17 immune responses, and inflammatory cytokine production. Therefore, understanding the immunological changes that lead to this low-grade inflammatory milieu becomes crucial for the development of therapies that suppress the risk of autoimmune diseases and other immunological conditions. Cells generate extracellular vesicles (EVs) to eliminate cellular waste as well as communicating the adjacent and distant cells through exchanging the components (genetic material [DNA or RNA], lipids, and proteins) between them. Immune cells and adipocytes from individuals with obesity and a high basal metabolic index (BMI) produce also release exosomes (EXOs) and microvesicles (MVs), which are collectively called EVs. These EVs play a crucial role in the development of autoimmune diseases. The current review discusses the immunological dysregulation that leads to inflammation, inflammatory diseases associated with obesity, and the role played by EXOs and MVs in the induction and progression of this devastating conditi8on.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 1","pages":"30-44"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770589/pdf/nihms-1760223.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10804714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai-Cun Zhou, Xin-Yan Yan, Wen-Wen Yu, Xiao-Qin Liang, Xiao-Yan Du, Zhi-Chang Liu, Jian-Ping Long, Guang-Hui Zhao, Hong-Bin Liu
{"title":"Lactic acid in macrophage polarization: The significant role in inflammation and cancer.","authors":"Hai-Cun Zhou, Xin-Yan Yan, Wen-Wen Yu, Xiao-Qin Liang, Xiao-Yan Du, Zhi-Chang Liu, Jian-Ping Long, Guang-Hui Zhao, Hong-Bin Liu","doi":"10.1080/08830185.2021.1955876","DOIUrl":"https://doi.org/10.1080/08830185.2021.1955876","url":null,"abstract":"<p><p>Metabolite lactic acid has always been regarded as a metabolic by-product rather than a bioactive molecule. Recently, this view has changed since it was discovered that lactic acid can be used as a signal molecule and has novel signal transduction functions both intracellular and extracellular, which can regulate key functions in the immune system. In recent years, more and more evidence has shown that lactic acid is closely related to the metabolism and polarization of macrophages. During inflammation, lactic acid is a regulator of macrophage metabolism, and it can prevent excessive inflammatory responses; In malignant tumors, lactic acid produced by tumor tissues promotes the polarization of tumor-associated macrophages, which in turn promotes tumor progression. In this review, we examined the relationship between lactic acid and macrophage metabolism. We further discussed how lactic acid plays a role in maintaining the homeostasis of macrophages, as well as the biology of macrophage polarization and the M1/M2 imbalance in human diseases. Potential methods to target lactic acid in the treatment of inflammation and cancer will also be discussed so as to provide new strategies for the treatment of diseases.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"4-18"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2021.1955876","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39219765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive overview on the genetics of Behçet's disease.","authors":"Mahdi Mahmoudi, Saeed Aslani, Akira Meguro, Maryam Akhtari, Yousef Fatahi, Nobuhisa Mizuki, Farhad Shahram","doi":"10.1080/08830185.2020.1851372","DOIUrl":"https://doi.org/10.1080/08830185.2020.1851372","url":null,"abstract":"Abstract Behçet's disease (BD) is a systemic and inflammatory disease, characterized mainly by recurrent oral and genital ulcers, eye involvement, and skin lesions. Although the exact etiopathogenesis of BD remains unrevealed, a bulk of studies have implicated the genetic contributing factors as critical players in disease predisposition. In countries along the Silk Road, human leukocyte antigen (HLA)-B51 has been reported as the strongest genetically associated factor for BD. Genome-wide association studies, local genetic polymorphism studies, and meta-analysis of combined data from Turkish, Iranian, and Japanese populations have also identified new genetic associations with BD. Among these, other HLA alleles such as HLA-B*15, HLA-B*27, HLA-B*57, and HLA-A*26 have been found as independent risk factors for BD, whereas HLA-B*49 and HLA-A*03 are independent protective alleles for BD. Moreover, other genes have also reached the genome-wide significance level of association with BD susceptibility, including IL10, IL23R-IL12RB2, IL12A, CCR1-CCR3, STAT4, TNFAIP3, ERAP1, KLRC4, and FUT2. Also, several rare nonsynonymous variants in TLR4, IL23R, NOD2, and MEFV genes have been reported to be involved in BD pathogenesis. According to genetic determinants in the loci outside the MHC region that are contributed to the host defense, immunity, and inflammation pathways, it is suggested that immune responses to the pathogen as an important environmental factor and mucosal immunity contribute to BD susceptibility.","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 2","pages":"84-106"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1851372","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38657731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abraham U Morales-Primo, Ingeborg Becker, Jaime Zamora-Chimal
{"title":"Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles.","authors":"Abraham U Morales-Primo, Ingeborg Becker, Jaime Zamora-Chimal","doi":"10.1080/08830185.2021.1921174","DOIUrl":"https://doi.org/10.1080/08830185.2021.1921174","url":null,"abstract":"<p><p>Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 2","pages":"253-274"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2021.1921174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39020140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immune checkpoints in sepsis: New hopes and challenges.","authors":"Yan-Cun Liu, Song-Tao Shou, Yan-Fen Chai","doi":"10.1080/08830185.2021.1884247","DOIUrl":"https://doi.org/10.1080/08830185.2021.1884247","url":null,"abstract":"<p><p>Sepsis is a life-threatening syndrome with a high incidence and a weighty economic burden. The cytokines storm in the early stage and the state of immunosuppression in the late stage contribute to the mortality of sepsis. Immune checkpoints expressed on lymphocytes and APCs, including CD28, CTLA-4, CD80, CD86, PD-1 and PD-L1, CD40 and CD40L, OX40 and OX40L, 4-1BB and 4-1BBL, BTLA, TIM family, play significant roles in the pathogenesis of sepsis through regulating the immune disorder. The specific therapies targeting immune checkpoints exhibit great potentials in the animal and preclinical studies, and further clinical trials are planning to implement. Here, we review the current literature on the roles played by immune checkpoints in the pathogenesis and treatment of sepsis. We hope to provide further insights into this novel immunomodulatory strategy.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"207-216"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2021.1884247","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25363769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah W Song, Robert P Somerville, David F Stroncek, Steven L Highfill
{"title":"Scaling up and scaling out: Advances and challenges in manufacturing engineered T cell therapies.","authors":"Hannah W Song, Robert P Somerville, David F Stroncek, Steven L Highfill","doi":"10.1080/08830185.2022.2067154","DOIUrl":"10.1080/08830185.2022.2067154","url":null,"abstract":"<p><p>Engineered T cell therapies such as CAR-T cells and TCR-T cells have generated impressive patient responses in previously incurable diseases. In the past few years there have been a number of technical innovations that enable robust clinical manufacturing in functionally closed and often automated systems. Here we describe the latest technology used to manufacture CAR- and TCR-engineered T cells in the clinic, including cell purification, transduction/transfection, expansion and harvest. To help compare the different systems available, we present three case studies of engineered T cells manufactured for phase I clinical trials at the NIH Clinical Center (CD30 CAR-T cells for lymphoma, CD19/CD22 bispecific CAR-T cells for B cell malignancies, and E7 TCR T cells for human papilloma virus-associated cancers). Continued improvement in cell manufacturing technology will help enable world-wide implementation of engineered T cell therapies.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 6","pages":"638-648"},"PeriodicalIF":4.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815724/pdf/nihms-1848290.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9730554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The immunologic aspects of cytokine release syndrome and graft versus host disease following CAR T cell therapy.","authors":"Vahid Mansouri, Niloufar Yazdanpanah, Nima Rezaei","doi":"10.1080/08830185.2021.1984449","DOIUrl":"https://doi.org/10.1080/08830185.2021.1984449","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cells are the pioneers of cancer immunotherapy, which to this date have several FDA-approved products. They have been substantially improved since their first introduction in 1993 and have shown promising results regardless of their inevitable side effects. Cytokine release syndrome (CRS), the most common toxicity after CAR T cell treatment, is affiliated to a systemic inflammation through surge of cytokines, mainly IL-6, IL-1, and INF-γ. Furthermore, difference between histocompatibility antigens activates the graft versus host disease (GvHD) effect of the allogenic CAR T cells against the host cells. Immunological reactions induced by CAR T cells in the form of CRS or GvHD is necessary for fostering good responses, while excess reactions can potentially threaten patient life. In this review, we first describe the history, applications, and structure of CAR T cells, followed by a comprehensive review of CRS regarding its definition, management, and immunological aspects. Finally, we discuss about the clinical aspects of CRS and GvHD after CAR T cell therapy and how to harness anti-tumoral effects, while mitigating the adverse effects.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"649-668"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39484927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The interplay between aryl hydrocarbon receptor, H. pylori, tryptophan, and arginine in the pathogenesis of gastric cancer.","authors":"Marzieh Pirzadeh, Nastaran Khalili, Nima Rezaei","doi":"10.1080/08830185.2020.1851371","DOIUrl":"https://doi.org/10.1080/08830185.2020.1851371","url":null,"abstract":"<p><p>Several risk factors are known to be involved in the initiation and development of gastric cancer. Among them, H. pylori is one of the most prominent with multiple virulence factors contributing to its pathogenicity. In this study, we have discussed an interesting immunological cycle exploring the interplay between H. pylori, aryl hydrocarbon receptor (AHR), tryptophan, arginine, and the metabolites of these two amino acids in the development of gastric cancer. AHR is a ligand-activated transcription factor which acts as a regulator for a diverse set of genes and has various types of exogenous and endogenous ligands. The tryptophan metabolite, kynurenine, is one of these ligands that can interact with AHR, leading to immune suppression and subsequently, susceptibility to gastric cancer. On the other hand, H. pylori downregulates the expression of AHR and AHR repressor (AHRR), leading to increased inflammatory cytokine production. A metabolite of the kynurenine pathway, xanthurenic acid, is a potent inhibitor of a terminal enzyme in the synthetic pathway of tetrahydrobiopterin (BH4). BH4, itself, is a cofactor in the process of nitric oxide (NO) production from arginine that has been shown to have immune-enhancing properties. Arginine has also been evidenced to have anti-tumoral function through inducing apoptosis in gastric cell lines; however, controversy exists regarding the anti-tumor role of arginine and BH4, since they are also associated with increased NO production, subsequently promoting tumor angiogenesis. Hence, although several synergistic connections result in immunity improvement, these correlations can also act as a double-edged sword, promoting tumor development. This emphasizes on the need for further investigations to better understand this complex interplay.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 3","pages":"299-312"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1851371","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38739144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds.","authors":"Sweety Asija, Abhishek Chatterjee, Sandhya Yadav, Godhanjali Chekuri, Atharva Karulkar, Ankesh Kumar Jaiswal, Jayant S Goda, Rahul Purwar","doi":"10.1080/08830185.2022.2101647","DOIUrl":"https://doi.org/10.1080/08830185.2022.2101647","url":null,"abstract":"<p><p>The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":" ","pages":"582-605"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40593548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}