International Microbiology最新文献

筛选
英文 中文
Vidarabine as a novel antifungal agent against Candida albicans: insights on mechanism of action. 维达拉宾作为一种新型抗真菌剂对抗白色念珠菌:对作用机制的见解。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-08-10 DOI: 10.1007/s10123-024-00565-z
Tanjila C Gavandi, Sargun T Basrani, Sayali A Chougule, Shivani B Patil, Omkar S Nille, Govind B Kolekar, Shivanand R Yankanchi, S Mohan Karuppayil, Ashwini K Jadhav
{"title":"Vidarabine as a novel antifungal agent against Candida albicans: insights on mechanism of action.","authors":"Tanjila C Gavandi, Sargun T Basrani, Sayali A Chougule, Shivani B Patil, Omkar S Nille, Govind B Kolekar, Shivanand R Yankanchi, S Mohan Karuppayil, Ashwini K Jadhav","doi":"10.1007/s10123-024-00565-z","DOIUrl":"10.1007/s10123-024-00565-z","url":null,"abstract":"<p><p>Around 1.5 million mortality cases due to fungal infection are reported annually, posing a massive threat to global health. However, the effectiveness of current antifungal therapies in the treatment of invasive fungal infections is limited. Repurposing existing antifungal drugs is an advisable alternative approach for enhancing their effectiveness. This study evaluated the antifungal efficacy of the antiviral drug vidarabine against Candida albicans ATCC 90028. Antifungal susceptibility testing was performed by microbroth dilution assay and further processed to find the minimum fungicidal concentration. Investigation on probable mode of vidarabine action against C. albicans was assessed by using the ergosterol reduction assay, reactive oxygen species (ROS) accumulation, nuclear condensation, and apoptosis assay. Results revealed that C. albicans was susceptible to vidarabine action and exhibited minimum inhibitory concentration at 150 µg/ml. At a concentration of 300 µg/ml, vidarabine had fungicidal activity against C. albicans. 300 µg/ml vidarabine-treated C. albicans cells demonstrated 91% reduced ergosterol content. Annexin/FITC/PI assay showed that vidarabine (150 µg/ml) had increased late apoptotic cells up to 31%. As per the fractional inhibitory concentration index, vidarabine had synergistic activity with fluconazole and caspofungin against this fungus. The mechanism underlying fungicidal action of vidarabine was evaluated at the intracellular level, and probably because of increased nuclear condensation, enhanced ROS generation, and cell cycle arrest. In conclusion, this data is the first to report that vidarabine has potential to be used as a repurposed antifungal agent alone or in combination with standard antifungal drugs, and could be a quick and safe addition to existing therapies for treating fungal infections.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"589-602"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-microbial, anti-biofilm, and efflux pump inhibitory effects of ellagic acid-bonded magnetic nanoparticles against Escherichia coli isolates. 鞣花酸键合磁性纳米粒子对大肠埃希氏菌分离物的抗微生物、抗生物膜和外排泵抑制作用。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-08-06 DOI: 10.1007/s10123-024-00560-4
Fatemeh Norouzalinia, Leila Asadpour, Masoud Mokhtary
{"title":"Anti-microbial, anti-biofilm, and efflux pump inhibitory effects of ellagic acid-bonded magnetic nanoparticles against Escherichia coli isolates.","authors":"Fatemeh Norouzalinia, Leila Asadpour, Masoud Mokhtary","doi":"10.1007/s10123-024-00560-4","DOIUrl":"10.1007/s10123-024-00560-4","url":null,"abstract":"<p><p>The spread of microbial resistance is a threat to public health. In this study, the anti-microbial, anti-biofilm, and efflux pump inhibitory effects of ellagic acid-loaded magnetic nanoparticles (Fe<sub>3</sub>O<sub>4</sub>NPs@EA) against beta-lactamase producing Escherichia coli isolates have been investigated. The effects of Fe<sub>3</sub>O<sub>4</sub> NPs@EA on the growth inhibition of E. coli isolates were determined by disc diffusion method and determining the minimum inhibitory concentration was done using broth micro-dilution method. The anti-biofilm effect of nanoparticles was investigated using the microplate method. The efflux pump inhibitory effect of nanoparticles was investigated using cart-wheel method and by investigating the effect of nanoparticles on acrB and tolC genes expression levels. Fe<sub>3</sub>O<sub>4</sub> NPs@EA showed anti-bacterial effects against test bacteria, and the MIC of these nanoparticles varied from 0.19 to 1.56 mg/mL. These nanoparticles caused a 43-62% reduction in biofilm formation of test bacteria compared to control. Furthermore, efflux pump inhibitory effect of these nanoparticles was confirmed at a concentration of 1/8 MIC, and the expression of acrB and tolC genes decreased in bacteria treated with 1/4 MIC Fe<sub>3</sub>O<sub>4</sub> NPs@EA. According to the results, the use of nanoparticles containing ellagic acid can provide a basis for the development of new treatments against drug-resistant E. coli. This substance may improve the concentration of antibiotics in the bacterial cell and increase their effectiveness by inhibiting the efflux in E. coli isolates.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"563-573"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of grassland degradation on diversity of arbuscular mycorrhizal fungi of a pioneer plant. 草地退化对一种先锋植物的丛枝菌根真菌多样性的影响。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-08-11 DOI: 10.1007/s10123-024-00564-0
Qiqi Han, Zichao Li, Yingjie Jiang, Zhuo Zhang, Yuao Qin, Zhongkuan Liu, Guixia Liu
{"title":"Effects of grassland degradation on diversity of arbuscular mycorrhizal fungi of a pioneer plant.","authors":"Qiqi Han, Zichao Li, Yingjie Jiang, Zhuo Zhang, Yuao Qin, Zhongkuan Liu, Guixia Liu","doi":"10.1007/s10123-024-00564-0","DOIUrl":"10.1007/s10123-024-00564-0","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that engage in crucial interactions with plants, playing a vital role in grassland ecology. Our study focuses on the pioneer plant Agropyron cristatum, and we collected soil samples from four degraded grasslands in Yudaokou to investigate the response of community composition to the succession of degraded grasslands. We measured the vegetation status, soil physical and chemical properties, AMF colonization, and spore density in different degraded grasslands. High-throughput sequencing was employed to analyze AMF in soil samples. Correlations among community composition, soil characteristics, and plant factors were studied using principal component and regression analyses. The distribution of AMF in grasslands exhibited variation with different degrees of degradation, with Glomus, Scutellospora, and Diversispora being the dominant genera. The abundance of dominant genera in AMF also varied, showing a gradual increase in the relative abundance of the genus Diversispora with higher degradation levels. AMF diversity decreased from 27.7% to 12.4% throughout the degradation process. Among 180 samples of Agropyron cristatum plants, AMF hyphae and vesicles displayed the highest infection status in non-degraded grasslands and the lowest in severely degraded ones. Peak AMF spore production occurred in August, with maximum values in the 0-10-cm soil layer, and the highest spore densities were found in lightly degraded grasslands. Apart from pH, soil factors exhibited a positive correlation with AMF infection during grassland degradation. Furthermore, changes in AMF community composition were jointly driven by vegetation and soil characteristics, with vegetation coverage and soil organic carbon significantly impacting AMF distribution. Significant differences in AMF variables (spore number and diversity index) were also observed at different soil depths. Grassland successional degradation significantly influences AMF community structure and composition. Our future focus will be on understanding response mechanisms and implementing improvement methods for AMF during grassland degradation and subsequent restoration efforts.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"603-621"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of susceptibility patterns and adaptability of the newly emerged Candida auris. 新出现的白色念珠菌的易感性模式和适应性特征。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-08-07 DOI: 10.1007/s10123-024-00563-1
Matlou D Semenya, Adebowale E Aladejana, Sizwe I Ndlovu
{"title":"Characterization of susceptibility patterns and adaptability of the newly emerged Candida auris.","authors":"Matlou D Semenya, Adebowale E Aladejana, Sizwe I Ndlovu","doi":"10.1007/s10123-024-00563-1","DOIUrl":"10.1007/s10123-024-00563-1","url":null,"abstract":"<p><p>The emergence of Candida auris has caused a major concern in the public health worldwide. This novel fungus is characterized by its multidrug resistance profile, ability to thrive in harsh and stressful conditions, as well as high temperatures and salt concentrations, persistence on hospital surfaces, causing nosocomial infections and outbreaks, and unique fitness properties. Here, we study the antifungal susceptibility patterns, thermotolerance, and halotolerance of 15 putative C. auris clinical isolates from Inkosi Albert Academic Hospital, Durban, South Africa. Five of the C. auris isolates showed resistance to all three antifungals (fluconazole, amphotericin B, and micafungin) and were selected for characterization of their adaptability mechanisms. Four of the tested multidrug-resistant C. auris isolates (C. auris strain F25, C. auris strain F276, C. auris F283, and C. auris M153) showed good growth when exposed to high temperature (42 °C) and salinity (10% NaCl) conditions whereas one isolate (C. auris F65) showed moderate growth under these conditions. Candida parapsilosis showed poor growth whereas C. albicans no growth under these conditions. The five C. auris strains were positive for all the adaptive features.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"575-587"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial efficacy and amino acid substitutions associated with susceptibility to the tellurium compound AS101 against Haemophilus influenzae and Haemophilus parainfluenzae. 碲化合物 AS101 对流感嗜血杆菌和副流感嗜血杆菌的抗菌效力以及与敏感性相关的氨基酸替换。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-07-11 DOI: 10.1007/s10123-024-00558-y
Cheng-Hsun Ho, Tsung-Ying Yang, Sung-Pin Tseng, Pei-Yi Su
{"title":"Antimicrobial efficacy and amino acid substitutions associated with susceptibility to the tellurium compound AS101 against Haemophilus influenzae and Haemophilus parainfluenzae.","authors":"Cheng-Hsun Ho, Tsung-Ying Yang, Sung-Pin Tseng, Pei-Yi Su","doi":"10.1007/s10123-024-00558-y","DOIUrl":"10.1007/s10123-024-00558-y","url":null,"abstract":"<p><p>The tellurite toxicity in Haemophilus influenzae and H. parainfluenzae remains unclear. To understand the potential of tellurite as a therapeutic option for these bacteria, we investigated the antimicrobial efficacy of AS101, a tellurium compound, against H. influenzae and H. parainfluenzae and the molecular basis of their differences in AS101 susceptibility. Through broth microdilution, we examined the minimum inhibitory concentration (MIC) of AS101 in 51 H. influenzae and 28 H. parainfluenzae isolates. Whole-genome sequencing was performed on the H. influenzae isolates to identify genetic variations associated with AS101 susceptibility. The MICs of AS101 were ≦ 4, 16-32, and ≧ 64 μg/mL in 9 (17.6%), 12 (23.5%), and 30 (58.8%) H. influenzae isolates, respectively, whereas ≦ 0.5 μg/mL in all H. parainfluenzae isolates, including multidrug-resistant isolates. Time-killing kinetic assay and scanning electron microscopy revealed the in vitro bactericidal activity of AS101 against H. parainfluenzae. Forty variations in nine tellurite resistance-related genes were associated with AS101 susceptibility. Logistic regression, receiver operator characteristic curve analysis, Venn diagram, and protein sequence alignment indicated that Val195Ile substitution in TerC, Ser93Gly in Gor (glutathione reductase), Pro44Ala/Ala50Pro in NapB (nitrate reductase), Val307Leu in TehA (tellurite resistance protein), Cys105Arg in CysK (cysteine synthase), and Thr364Ser in Csd (Cysteine desulfurase) were strongly associated with reduced AS101 susceptibility, whereas Ser155Pro in TehA with increased AS101 susceptibility. In conclusions, the antimicrobial efficacy of AS101 is high against H. parainfluenzae but low against H. influenzae. Genetic variations and corresponding protein changes relevant to AS101 non-susceptibility in H. influenzae were identified.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"473-484"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Candida albicans in the oral cavities of pets: biofilm formation, putative virulence, antifungal resistance profiles and classification of the isolates. 宠物口腔中的白色念珠菌:生物膜的形成、推测的毒性、抗真菌耐药性特征以及分离物的分类。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-07-02 DOI: 10.1007/s10123-024-00552-4
Harun Hizlisoy, Adalet Dishan, Ilknur Karaca Bekdik, Mukaddes Barel, Kursat Koskeroglu, Yasin Ozkaya, Oznur Aslan, Omer Tolga Yilmaz
{"title":"Candida albicans in the oral cavities of pets: biofilm formation, putative virulence, antifungal resistance profiles and classification of the isolates.","authors":"Harun Hizlisoy, Adalet Dishan, Ilknur Karaca Bekdik, Mukaddes Barel, Kursat Koskeroglu, Yasin Ozkaya, Oznur Aslan, Omer Tolga Yilmaz","doi":"10.1007/s10123-024-00552-4","DOIUrl":"10.1007/s10123-024-00552-4","url":null,"abstract":"<p><p>The study aimed to investigate Candida albicans presence, antifungal resistance, biofilm formation, putative virulence genes, and molecular characterization in oral samples of dogs and cats. A total of 239 oral samples were collected from cats and dogs of various breeds and ages at Erciyes University, Faculty of Veterinary Medicine Clinics, between May 2017 and April 2018. Among 216 isolates obtained, 15 (6.95%) were identified as C. albicans, while 8 (3.7%) were non-albicans Candida species. Antifungal susceptibility testing revealed sensitivities to caspofungin, fluconazole, and flucytosine in varying proportions. Molecular analysis indicated the presence of fluconazole and caspofungin resistance genes in all C. albicans isolates. Additionally, virulence genes ALS1, HWP1, and HSP90 showed variable presence. Biofilm formation varied among isolates, with 46.7% strong, 33.3% moderate, and 20% weak producers. PCA analysis categorized isolates into two main clusters, with some dog isolates grouped separately. The findings underscore the significance of oral care and protective measures in pets due to C. albicans prevalence, biofilm formation, virulence factors, and antifungal resistance in their oral cavity, thereby aiding clinical diagnosis and treatment in veterinary medicine.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"423-435"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a C-S lyase inhibitor for the prevention of human body malodor formation: tannic acid inhibits the thioalcohol production in Staphylococcus hominis. 发现一种用于预防人体恶臭形成的 C-S 裂解酶抑制剂:单宁酸可抑制人葡萄球菌产生硫醇。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-06-24 DOI: 10.1007/s10123-024-00551-5
Ozkan Fidan, Ayse Doga Karipcin, Ayse Hamide Köse, Ayse Anaz, Beyza Nur Demirsoy, Nuriye Arslansoy, Lei Sun, Somdutt Mujwar
{"title":"Discovery of a C-S lyase inhibitor for the prevention of human body malodor formation: tannic acid inhibits the thioalcohol production in Staphylococcus hominis.","authors":"Ozkan Fidan, Ayse Doga Karipcin, Ayse Hamide Köse, Ayse Anaz, Beyza Nur Demirsoy, Nuriye Arslansoy, Lei Sun, Somdutt Mujwar","doi":"10.1007/s10123-024-00551-5","DOIUrl":"10.1007/s10123-024-00551-5","url":null,"abstract":"<p><p>Human body odor is a result of the bacterial biotransformation of odorless precursor molecules secreted by the underarm sweat glands. In the human axilla, Staphylococcus hominis is the predominant bacterial species responsible for the biotransformation process of the odorless precursor molecule into the malodorous 3M3SH by two enzymes, a dipeptidase and a specific C-S lyase. The current solutions for malodor, such as deodorants and antiperspirants are known to block the apocrine glands or disrupt the skin microbiota. Additionally, these chemicals endanger both the environment and human health, and their long-term use can influence the function of sweat glands. Therefore, there is a need for the development of alternative, environmentally friendly, and natural solutions for the prevention of human body malodor. In this study, a library of secondary metabolites from various plants was screened to inhibit the C-S lyase, which metabolizes the odorless precursor sweat molecules, through molecular docking and molecular dynamics (MD) simulation. In silico studies revealed that tannic acid had the strongest affinity towards C-S lyase and was stably maintained in the binding pocket of the enzyme during 100-ns MD simulation. We found in the in vitro biotransformation assays that 1 mM tannic acid not only exhibited a significant reduction in malodor formation but also had quite low growth inhibition in S. hominis, indicating the minimum inhibitory effect of tannic acid on the skin microflora. This study paved the way for the development of a promising natural C-S lyase inhibitor to eliminate human body odor and can be used as a natural deodorizing molecule after further in vivo analysis.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"411-422"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptococcus laurentii: a wild yeast for xylanase production from agricultural by-products. 月桂隐球菌:一种利用农副产品生产木聚糖酶的野生酵母。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-07-06 DOI: 10.1007/s10123-024-00555-1
Deborah Murowaniecki Otero, Bruno Perret, Liliane Teixeira, Gabrielle Vitória Gautério, Helen Treichel, Susana Juliano Kalil
{"title":"Cryptococcus laurentii: a wild yeast for xylanase production from agricultural by-products.","authors":"Deborah Murowaniecki Otero, Bruno Perret, Liliane Teixeira, Gabrielle Vitória Gautério, Helen Treichel, Susana Juliano Kalil","doi":"10.1007/s10123-024-00555-1","DOIUrl":"10.1007/s10123-024-00555-1","url":null,"abstract":"<p><p>The development of technologies that allow the production of enzymes at a competitive cost is of great importance for several biotechnological applications, and the use of agro-industrial by-products is an excellent alternative to minimize costs and reduce environmental impacts. This study aimed to produce endo-xylanases using agro-industrial substrates rich in hemicellulose as sources of xylan in culture media. For this purpose, the yeast Cryptococcus laurentti and five lignocellulosic materials (defatted rice bran, rice husk, corn cob, oat husks, and soybean tegument), with and without pretreatment, were used as a source of xylan for enzyme production. To insert the by-products in the culture medium, they were dried and treated (if applicable) with 4% (w.v<sup>-1</sup>) NaOH and then added in a concentration of 2% (w.v<sup>-1</sup>). The cultures were agitated for 96 h, and the aliquots were removed to determine the enzymatic activities. Among the by-products studied, the maximum activity (8.7 U. mL<sup>-1</sup> at pH 7.3) was obtained where rice bran was used. In contrast, corn cob was the by-product that resulted in lower enzyme production (1.6 U.mL<sup>-1</sup>). Thus, the defatted rice bran deserves special attention in front of the other by-products used since it provides the necessary substrate for producing endo-xylanases by yeast.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"437-445"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulations of synergistic microbial consortia for enhanced systemic resistance against Fusarium wilt in cumin. 增强小茴香对镰刀菌枯萎病的系统抗性的协同微生物联合体配方。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-03-01 Epub Date: 2024-07-18 DOI: 10.1007/s10123-024-00553-3
Devendra Singh, Kuldeep Singh Jadon, Aman Verma, Neelam Geat, Rajneesh Sharma, Kamlesh Kumar Meena, Rajesh Kumar Kakani
{"title":"Formulations of synergistic microbial consortia for enhanced systemic resistance against Fusarium wilt in cumin.","authors":"Devendra Singh, Kuldeep Singh Jadon, Aman Verma, Neelam Geat, Rajneesh Sharma, Kamlesh Kumar Meena, Rajesh Kumar Kakani","doi":"10.1007/s10123-024-00553-3","DOIUrl":"10.1007/s10123-024-00553-3","url":null,"abstract":"<p><p>The study aimed to understand the dynamic interplay between plants and their associated microbes to develop an efficient microbial consortium for managing Fusarium wilt of cumin. A total of 601 rhizospheric and endophytic bacteria and fungi were screened for antagonistic activity against Fusarium oxysporum f.sp. cumini (Foc). Subsequently, ten bacteria and ten fungi were selected for characterizing their growth promotion traits and ability to withstand abiotic stress. Furthermore, a pot experiment was conducted to evaluate the bioefficacy of promising biocontrol isolates-1F, 16B, 31B, and 223B in mono and consortium mode, focusing on disease severity, plant growth, and defense responses in cumin challenged with Foc. Promising isolates were identified as Trichoderma atrobruneum 15F, Pseudomonas sp. 2B, Bacillus amyloliquefaciens 9B, and Bacillus velezensis 32B. In planta, results revealed that cumin plants treated with consortia of 15F, 2B, 9B, and 32B showed highest percent disease control (76.35%) in pot experiment. Consortia of biocontrol agents significantly enhanced production of secondary metabolites and activation of antioxidant-defense enzymes compared to individual strain. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual strain and positive control. The four-microbe consortium significantly enhanced chlorophyll (~ 2.74-fold), carotenoid content (~ 2.14-fold), plant height (~ 1.8-fold), dry weight (~ 1.96-fold), and seed yield (~ 19-fold) compared to positive control in pot experiment. Similarly, four microbe consortia showed highest percent disease control (72.2%) over the positive control in field trial. Moreover, plant growth, biomass, yield, and yield attributes of cumin were also significantly increased in field trial over the positive control as well as negative control.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"497-523"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal mediated production of novel metabolites of meloxicam and their tankyrase-2 inhibition potentials: an in silico study. 真菌介导的新型美洛昔康代谢物的产生及其tankyase -2抑制潜力:一项计算机研究。
IF 2.3 4区 生物学
International Microbiology Pub Date : 2025-02-28 DOI: 10.1007/s10123-025-00636-9
Srisailam Keshetti, Gurram Shyam Prasad
{"title":"Fungal mediated production of novel metabolites of meloxicam and their tankyrase-2 inhibition potentials: an in silico study.","authors":"Srisailam Keshetti, Gurram Shyam Prasad","doi":"10.1007/s10123-025-00636-9","DOIUrl":"https://doi.org/10.1007/s10123-025-00636-9","url":null,"abstract":"<p><p>The current study focuses on the isolation of a thermophilic fungus capable of biotransforming meloxicam to produce novel metabolites with potential tankyrase inhibitory properties. The isolated strain is identified as Rhizomucor pusillus, confirmed through both morphological and molecular methodologies. The biotransformation process was monitored using high-performance liquid chromatography (HPLC) in conjunction with a two-stage fermentation approach. Previous research, along with LC-MS/MS analyses, has successfully characterized the metabolites generated, providing structural validation. This fungus enabled the conversion of meloxicam into four metabolites: 5-hydroxy methyl meloxicam (M1), 5-carboxy meloxicam (M2), and two previously unreported metabolites (M3 and M4), under controlled conditions of pH 6.0 and a temperature of 40 °C over a 3-day shaking culture period. The fungal strain R. pusillus has demonstrated the ability to generate notable metabolites of meloxicam, particularly M1 and M2, as evidenced by research conducted on mammals. Moreover, in silico analyses have revealed the presence of two novel metabolites that may inhibit tankyrase-2. This finding indicates that R. pusillus possesses an enzymatic system comparable to that found in mammals, facilitating the environmentally sustainable and economically viable production of metabolites. Additionally, this strain is capable of synthesizing substantial amounts of metabolites that could potentially exhibit pharmacological effects.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信