{"title":"Fungal mediated production of novel metabolites of meloxicam and their tankyrase-2 inhibition potentials: an in silico study.","authors":"Srisailam Keshetti, Gurram Shyam Prasad","doi":"10.1007/s10123-025-00636-9","DOIUrl":null,"url":null,"abstract":"<p><p>The current study focuses on the isolation of a thermophilic fungus capable of biotransforming meloxicam to produce novel metabolites with potential tankyrase inhibitory properties. The isolated strain is identified as Rhizomucor pusillus, confirmed through both morphological and molecular methodologies. The biotransformation process was monitored using high-performance liquid chromatography (HPLC) in conjunction with a two-stage fermentation approach. Previous research, along with LC-MS/MS analyses, has successfully characterized the metabolites generated, providing structural validation. This fungus enabled the conversion of meloxicam into four metabolites: 5-hydroxy methyl meloxicam (M1), 5-carboxy meloxicam (M2), and two previously unreported metabolites (M3 and M4), under controlled conditions of pH 6.0 and a temperature of 40 °C over a 3-day shaking culture period. The fungal strain R. pusillus has demonstrated the ability to generate notable metabolites of meloxicam, particularly M1 and M2, as evidenced by research conducted on mammals. Moreover, in silico analyses have revealed the presence of two novel metabolites that may inhibit tankyrase-2. This finding indicates that R. pusillus possesses an enzymatic system comparable to that found in mammals, facilitating the environmentally sustainable and economically viable production of metabolites. Additionally, this strain is capable of synthesizing substantial amounts of metabolites that could potentially exhibit pharmacological effects.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00636-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Fungal mediated production of novel metabolites of meloxicam and their tankyrase-2 inhibition potentials: an in silico study.
The current study focuses on the isolation of a thermophilic fungus capable of biotransforming meloxicam to produce novel metabolites with potential tankyrase inhibitory properties. The isolated strain is identified as Rhizomucor pusillus, confirmed through both morphological and molecular methodologies. The biotransformation process was monitored using high-performance liquid chromatography (HPLC) in conjunction with a two-stage fermentation approach. Previous research, along with LC-MS/MS analyses, has successfully characterized the metabolites generated, providing structural validation. This fungus enabled the conversion of meloxicam into four metabolites: 5-hydroxy methyl meloxicam (M1), 5-carboxy meloxicam (M2), and two previously unreported metabolites (M3 and M4), under controlled conditions of pH 6.0 and a temperature of 40 °C over a 3-day shaking culture period. The fungal strain R. pusillus has demonstrated the ability to generate notable metabolites of meloxicam, particularly M1 and M2, as evidenced by research conducted on mammals. Moreover, in silico analyses have revealed the presence of two novel metabolites that may inhibit tankyrase-2. This finding indicates that R. pusillus possesses an enzymatic system comparable to that found in mammals, facilitating the environmentally sustainable and economically viable production of metabolites. Additionally, this strain is capable of synthesizing substantial amounts of metabolites that could potentially exhibit pharmacological effects.
期刊介绍:
International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials.
A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.