Dina M. Mahmoud , Mohammed R.A. Ali , Basmah Nasser Aldosari , Randa Mohammed Zaki , Obaid Afzal , Alaa S. Tulbah , Demiana M. Naguib , Mohamed I. Zanaty , Mary Eskander Attia , Fatma I. Abo El-Ela , Amr Gamal Fouad
{"title":"Functional candesartan loaded lipid nanoparticles for the control of diabetes-associated stroke: In vitro and in vivo studies","authors":"Dina M. Mahmoud , Mohammed R.A. Ali , Basmah Nasser Aldosari , Randa Mohammed Zaki , Obaid Afzal , Alaa S. Tulbah , Demiana M. Naguib , Mohamed I. Zanaty , Mary Eskander Attia , Fatma I. Abo El-Ela , Amr Gamal Fouad","doi":"10.1016/j.ijpx.2023.100227","DOIUrl":"https://doi.org/10.1016/j.ijpx.2023.100227","url":null,"abstract":"<div><p>Diabetes mellitus is a metabolic disease that raises the odds of developing stroke. Candesartan has been used to prevent stroke due to its inhibitory effects on blood pressure, angiogenesis, oxidative damage, and apoptosis. However, oral candesartan has very limited bioavailability and efficacy due to its weak solubility and slow release. The study aimed to develop a nasal formulation of candesartan-loaded liposomes containing ethanol and propylene glycol (CLEP) to improve candesartan's delivery, release, permeation, and efficacy as a potential diabetes-associated stroke treatment. Using design expert software, different CLEP formulations were prepared and evaluated in vitro to identify the optimum formulation, which.</p><p>The selected optimum formulation composed of 3.3% phospholipid, 10% ethanol, and 15% propylene glycol significantly increased the release and permeation of candesartan relative to free candesartan by a factor of 1.52 and 1.47, respectively. The optimum formulation significantly reduced the infarction after stroke in rats; decreased flexion, spontaneous motor activity, and time spent in the target quadrant by 70%, 64.71%, and 92.31%, respectively, and enhanced grip strength by a ratio of 2.3. Therefore, nasal administration of the CLEP formulation could be a potential diabetes-associated stroke treatment.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100227"},"PeriodicalIF":4.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000713/pdfft?md5=412a64e4b586722fa610cce4f18f071f&pid=1-s2.0-S2590156723000713-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139108936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Bekaert , P.H.M. Janssen , S. Fathollahi , D. Vanderroost , T. Roelofs , B.H.J. Dickhoff , C. Vervaet , V. Vanhoorne
{"title":"Batch vs. continuous direct compression – a comparison of material processability and final tablet quality","authors":"B. Bekaert , P.H.M. Janssen , S. Fathollahi , D. Vanderroost , T. Roelofs , B.H.J. Dickhoff , C. Vervaet , V. Vanhoorne","doi":"10.1016/j.ijpx.2023.100226","DOIUrl":"10.1016/j.ijpx.2023.100226","url":null,"abstract":"<div><p>In this study, an in-depth comparison was made between batch and continuous direct compression using similar compression set-ups. The overall material processability and final tablet quality were compared and evaluated. Correlations between material properties, process parameters and final tablet properties were made via multivariate data analyses. In total, 10 low-dosed (1% <em>w</em>/w) and 10 high-dosed (40% w/w) formulations were processed, using a total of 10 different fillers/filler combinations. The trials indicated that the impact of filler type, drug load or process settings was similar for batch and continuous direct compression. The main differentiator between batch and continuous was the flow dynamics in the operating system, where properties related to flow, compressibility and permeability played a crucial role. The less consistent flow throughout a batch process resulted in a significantly higher variability within the tablet press (σ<sub>CF</sub>) and for the tablet quality responses (σ<sub>Mass</sub>, σ<sub>TS</sub>). However, the better controlled blending procedure prior to batch processing was reflected in a more consistent API concentration variability. Overall, the comparison showed the benefits of selecting appropriate excipients and process settings to achieve a specific outcome, keeping in mind some key differentiators between both processes.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100226"},"PeriodicalIF":4.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000701/pdfft?md5=d5972570d4733ad868b94602ba419d01&pid=1-s2.0-S2590156723000701-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139021461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahira F. El Menshawe , Khaled Shalaby , Mohammed H. Elkomy , Heba M. Aboud , Yasmin M. Ahmed , Abdelmeged A. Abdelmeged , Marwa Elkarmalawy , Mahmoud A. Abou Alazayem , Amani M. El Sisi
{"title":"Repurposing celecoxib for colorectal cancer targeting via pH-triggered ultra-elastic nanovesicles: Pronounced efficacy through up-regulation of Wnt/β-catenin pathway in DMH-induced tumorigenesis","authors":"Shahira F. El Menshawe , Khaled Shalaby , Mohammed H. Elkomy , Heba M. Aboud , Yasmin M. Ahmed , Abdelmeged A. Abdelmeged , Marwa Elkarmalawy , Mahmoud A. Abou Alazayem , Amani M. El Sisi","doi":"10.1016/j.ijpx.2023.100225","DOIUrl":"10.1016/j.ijpx.2023.100225","url":null,"abstract":"<div><p>Celecoxib (CLX), a selective inhibitor for cyclooxygenase 2 (COX-2), has manifested potential activity against diverse types of cancer. However, low bioavailability and cardiovascular side effects remain the major challenges that limit its exploitation. In this work, we developed ultra-elastic nanovesicles (UENVs) with pH-triggered surface charge reversal traits that could efficiently deliver CLX to colorectal segments for snowballed tumor targeting. CLX-UENVs were fabricated via a thin-film hydration approach. The impact of formulation factors (Span 80, Tween 80, and sonication time) on the nanovesicular features was evaluated using Box–Behnken design, and the optimal formulation was computed. The optimum formulation was positively coated with polyethyleneimine (CLX-PEI-UENVs) and then coated with Eudragit S100 (CLX-ES-PEI-UENVs). The activity of the optimized nano-cargo was explored in 1,2-dimethylhydrazine-induced colorectal cancer in Wistar rats. Levels of COX-2, Wnt-2 and β-catenin were assessed in rats' colon. The diameter of the optimized CLX-ES-PEI-UENVs formulation was 253.62 nm, with a zeta potential of −23.24 mV, 85.64% entrapment, and 87.20% cumulative release (24 h). ES coating hindered the rapid release of CLX under acidic milieu (stomach and early small intestine) and showed extended release in the colon section. In colonic environments, the ES coating layer was removed due to high pH, and the charge on the nanovesicular corona was shifted from negative to positive. Besides, a pharmacokinetics study revealed that CLX-ES-PEI-UENVs had superior oral bioavailability by 2.13-fold compared with CLX suspension. Collectively, these findings implied that CLX-ES-PEI-UENVs could be a promising colorectal-targeted nanoplatform for effective tumor management through up-regulation of the Wnt/β-catenin pathway.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"7 ","pages":"Article 100225"},"PeriodicalIF":4.7,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000695/pdfft?md5=3b125d769dd69d3e0eed17cee103de1e&pid=1-s2.0-S2590156723000695-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139018759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Florian Pöstges , Jonas Lenhart , Edmont Stoyanov , Dominique J. Lunter , Karl G. Wagner
{"title":"Phase homogeneity in ternary amorphous solid dispersions and its impact on solubility, dissolution and supersaturation – Influence of processing and hydroxypropyl cellulose grade","authors":"Florian Pöstges , Jonas Lenhart , Edmont Stoyanov , Dominique J. Lunter , Karl G. Wagner","doi":"10.1016/j.ijpx.2023.100222","DOIUrl":"https://doi.org/10.1016/j.ijpx.2023.100222","url":null,"abstract":"<div><p>As performance of ternary amorphous solid dispersions (ASDs) depends on the solid-state characteristics and polymer mixing, a comprehensive understanding of synergistic interactions between the polymers in regard of dissolution enhancement of poorly soluble drugs and subsequent supersaturation stabilization is necessary. By choosing hot-melt extrusion (HME) and vacuum compression molding (VCM) as preparation techniques, we manipulated the phase behavior of ternary efavirenz (EFV) ASDs, comprising of either hydroxypropyl cellulose (HPC)-SSL or HPC-UL in combination with Eudragit® L 100–55 (EL 100–55) (50:50 polymer ratio), leading to single-phased (HME) and heterogeneous ASDs (VCM). Due to higher kinetic solid-state solubility of EFV in HPC polymers compared to EL 100–55, we visualized higher drug distribution into HPC-rich phases of the phase-separated ternary VCM ASDs via confocal Raman microscopy. Additionally, we observed differences in the extent of phase-separation in dependence on the selected HPC grade. As HPC-UL exhibited decisive lower melt viscosity than HPC-SSL, formation of partially miscible phases between HPC-UL and EL 100–55 was facilitated. Consequently, as homogeneously mixed polymer phases were required for optimal extent of solubility improvement, the manufacturing-dependent differences in dissolution performances were smaller using HPC-UL, instead of HPC-SSL, i.e. using HPC-UL was less demanding on shear stress provided by the process.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100222"},"PeriodicalIF":4.7,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259015672300066X/pdfft?md5=eceb5b4bdd3f4f8914869d63b82819de&pid=1-s2.0-S259015672300066X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138501550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Reinle-Schmitt , D. Šišak Jung , M. Morin , F.N. Costa , N. Casati , F. Gozzo
{"title":"Exploring high-throughput synchrotron X-Ray powder diffraction for the structural analysis of pharmaceuticals","authors":"M. Reinle-Schmitt , D. Šišak Jung , M. Morin , F.N. Costa , N. Casati , F. Gozzo","doi":"10.1016/j.ijpx.2023.100221","DOIUrl":"https://doi.org/10.1016/j.ijpx.2023.100221","url":null,"abstract":"<div><p>Synchrotron radiation offers a host of advanced properties, surpassing conventional laboratory sources with its high brightness, tunable phonon energy, photon beam coherence for advanced X-ray imaging, and a structured time profile, ideal for capturing dynamic atomic and molecular processes. However, these benefits come at the cost of operational complexity and expenses. Three decades ago, synchrotron radiation facilities, while technically open to all scientists, primarily served a limited community. Despite substantial accessibility improvements over the past two decades, synchrotron measurements still do not qualify as routine analyses. The intrinsic complexity of synchrotron science means experiments are pursued only when no alternatives suffice. In recent years, strides have been made in technology transfer offices, intermediate synchrotron-based analytical service companies, and the development of high-throughput synchrotron systems at various facilities, reshaping the perception of synchrotron science. This article investigates the practical application of synchrotron X-Ray Powder Diffraction (s-XRPD) techniques in pharmaceutical analysis. By utilizing concrete examples, we demonstrate how high-throughput systems have the potential to revolutionize s-XRPD applications in the pharmaceutical industry, rapidly generating XRPD patterns of comparable or superior quality to those obtained in state-of-the-art laboratory XRPD, all in less than 5 s. Additional cases featuring well-established pharmaceutical active ingredients (API) and excipients substantiate the concept of high throughput in pharmaceuticals, affirming data quality through structural refinements aligned with literature-derived unit cell parameters. Synchrotron data need not always be state-of-the-art to compete with lab-XRPD data. The key lies in ensuring user-friendliness, reproducibility, accessibility, cost-effectiveness, and the streamlined efforts associated with synchrotron instrumentation to remain highly competitive with their laboratory counterparts.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100221"},"PeriodicalIF":4.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000658/pdfft?md5=bdd4c40c9de053d34e051f057dbed0f0&pid=1-s2.0-S2590156723000658-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L.A. Lefol , P. Bawuah , J.A. Zeitler , J. Verin , F. Danede , J.F. Willart , F. Siepmann , J. Siepmann
{"title":"Drug release from PLGA microparticles can be slowed down by a surrounding hydrogel","authors":"L.A. Lefol , P. Bawuah , J.A. Zeitler , J. Verin , F. Danede , J.F. Willart , F. Siepmann , J. Siepmann","doi":"10.1016/j.ijpx.2023.100220","DOIUrl":"https://doi.org/10.1016/j.ijpx.2023.100220","url":null,"abstract":"<div><p>This study aimed to evaluate and better understand the potential impact that a layer of surrounding hydrogel (mimicking living tissue) can have on the drug release from PLGA microparticles. Ibuprofen-loaded microparticles were prepared with an emulsion solvent extraction/evaporation method. The drug loading was about 48%. The surface of the microparticles appeared initially smooth and non-porous. In contrast, the internal microstructure of the particles exhibited a continuous network of tiny pores. Ibuprofen release from <em>single</em> microparticles was measured into agarose gels and well-agitated phosphate buffer pH 7.4. Optical microscopy, scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and X-ray μCT imaging were used to characterize the microparticles before and after exposure to the release media. Importantly, ibuprofen release was much slower in the presence of a surrounding agarose gel, e.g., the complete release took two weeks vs. a few days in well agitated phosphate buffer. This can probably be attributed to the fact that the hydrogel sterically hinders substantial system swelling and, thus, slows down the related increase in drug mobility. In addition, <em>in this particular case</em>, the convective flow in agitated bulk fluid likely damages the thin PLGA layer at the microparticles' surface, giving the outer aqueous phase more rapid access to the inner continuous pore network: Upon contact with water, the drug dissolves and rapidly diffuses out through a continuous network of water-filled channels. Without direct surface access, most of the drug “has to wait” for the onset of substantial system swelling to be released.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100220"},"PeriodicalIF":4.7,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000646/pdfft?md5=2256955295ef46f3284e7a88abf6dd21&pid=1-s2.0-S2590156723000646-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mona G. Arafa , Hadeel A. Mousa , Mohamed Medhat Kataia , Shehabeldin M. , Nagia N. Afifi
{"title":"Functionalized surface of PLGA nanoparticles in thermosensitive gel to enhance the efficacy of antibiotics against antibiotic resistant infections in endodontics: A randomized clinical trial","authors":"Mona G. Arafa , Hadeel A. Mousa , Mohamed Medhat Kataia , Shehabeldin M. , Nagia N. Afifi","doi":"10.1016/j.ijpx.2023.100219","DOIUrl":"https://doi.org/10.1016/j.ijpx.2023.100219","url":null,"abstract":"<div><p><em>Enterococcus faecalis</em> plays the key role in endodontic infections and is responsible for the formation of biofilm on dentin, which causes a resistance against periradicular lesions treatment, consequently the aim of this study is to use nanoparticles entrapping anibacterial agents coated with chitosan that in authors previous study showed a successful <em>in vitro</em> biofilm inhibition, additionally incorporated in thermoresponsive gel.to benefit nanoparticles` small size, and the positive charge of their surfaces that binds with the negatively charged surface of bacterial cell causing its destruction, in addition to the sustained release pattern of the drug based nanoparticles in gel. Therefore, Ciprofloxacin hydrochloride (CIP) encapsulated in PLGA nanoparticles coated with chitosan (CIP-CS-PLGA-NPs), in addition to free CIP, were incorporated in Pluronic® 407/188 to form thermosensitive gels (F1) and (F2), respectively. The thermosensitive gels were tested with regards to rheology, gelling temperature and the release pattern of the drug. A clinical study of the efficacy of F1 and F2 as antibacterial treatments was conducted on patients followed by a comparative studies against CIP and Ca(OH)<sub>2</sub> pastes in terms of biofilm inhibition assay and total bacterial reduction count and percent.The results revealed that F1 and F2 exhibited gelation temperature of 36.9 ± 0.3 °C and 36.0 ± 0.4 °C, viscosity was 15,000 ± 360.6 and 7023.3 ± 296.8 cP respectively. The cumulative release of F1 and F2 after 72 h was 50.03% ± 0.7345 and 77.98% ± 3.122 respectively. F1 was the most efficient treatment against recurrent <em>E.faecalis</em> infection in endodontics that was evident by the highest total bacterial reduction count and percent and biofilm inhibition percent that were recorded in the group treated with F1followed by the group treated with F2. Nanocarriers succeeded in carrying the drug deeply in the root canal and sustaining its effect to abolish the obstinate <em>E. faecalis</em> recurrent infection and its biofilm formation.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100219"},"PeriodicalIF":4.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000634/pdfft?md5=5a28d6a0c2ae6a68d0541aaf8feb6d2e&pid=1-s2.0-S2590156723000634-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138436004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polydopamine-activated celastrol carbon dots for synergistic chemotherapy-photothermal therapy of tumors","authors":"Ping Sheng, Chao Bu, Tanyue Hui, Lili Zhou, Hao Chen, Guoliang Zhou","doi":"10.1016/j.ijpx.2023.100218","DOIUrl":"https://doi.org/10.1016/j.ijpx.2023.100218","url":null,"abstract":"<div><p>Synergistic chemotherapy and photothermal therapy (PTT) holds the promise of addressing the weakness of individualized chemotherapy and PTT. In this study, we synthesized a chemotherapeutic agent, PDA-Ce-CDs, which combines the photothermal conversion ability and the generation of hydroxyl radicals (•OH), enabling synergistic enhancement of antitumor effects. Furthermore, the localized heating effect of NIR radiation promoted the uptake of the PDA-Ce-CDs and enhances the sensitivity of intracellular reactive oxygen species (ROS). Finally, the antitumor activity of the PDA-Ce-CDs was evaluated through cell experiments and tumor-bearing mice experiments, confirming its excellent antitumor efficacy <em>in vivo</em> and <em>in vitro</em>. Our work presents a new strategy in cancer treatment by utilizing carbon dots in combination with photothermal agents for synergistic chemotherapy-photothermal therapy. This innovative approach offers a new therapeutic avenue for synergistic tumor treatment by harnessing the combined effects of photothermal therapy and chemotherapy.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100218"},"PeriodicalIF":4.7,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000622/pdfft?md5=5d7d7d41a5dcdfd3fa51508a1df39a76&pid=1-s2.0-S2590156723000622-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89988404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The characteristics and biological activity enhancements of melatonin encapsulations for skin care product applications","authors":"Phongsapak Phanphothong , Nattawadee Kanpipit , Suthasinee Thapphasaraphong","doi":"10.1016/j.ijpx.2023.100217","DOIUrl":"10.1016/j.ijpx.2023.100217","url":null,"abstract":"<div><p>Melatonin (MLT) exhibits antioxidant, ultraviolet protection, anti-inflammatory, and anti-aging properties. However, its effectiveness is limited by instability, a short half-life, and incompatible absorption. In this research, we encapsulated melatonin (MLT) in transfersomes (MT) and niosomes (MN) to enhance their properties and investigate their effects through in vitro cell assays using murine macrophages cells and human foreskin fibroblasts cells. The vesicle morphology, vesicle size, polydispersity index, zeta potential, entrapment efficiency (EE%), attenuated total reflectance-Fourier transform spectroscopy (ATR-FTIR) spectra, along with in vitro release, permeation profiles, and stability study were also evaluated. The results showed that both encapsulations displayed spherical morphology at the nanometric scale, their great physical stability and provided an EE% range of 58–78%. The MLT incorporation into the vesicle was confirmed by the ATR-FTIR spectra. Additionally, the encapsulation’ release profiles fitted with the Higuchi model, indicating controlled release of melatonin. Furthermore, MT showed greater permeability than MN and MS including melatonin deposition. In cell assays, MT exhibited significantly higher nitric oxide inhibition and stimulation of collagen compared to MN and MS. Therefore, MT demonstrated the highest possibility for anti-inflammatory and collagen-stimulating activities that could be applied in pharmaceutical or anti-aging cosmetic products.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100217"},"PeriodicalIF":4.7,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71481394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-tumor activity of silymarin nanoliposomes in combination with iron: In vitro and in vivo study","authors":"Maham Doagooyan , Seyedeh Hoda Alavizadeh , Amirhossein Sahebkar , Kebria Houshangi , Zahra Khoddamipour , Fatemeh Gheybi","doi":"10.1016/j.ijpx.2023.100214","DOIUrl":"https://doi.org/10.1016/j.ijpx.2023.100214","url":null,"abstract":"<div><p>Combination therapy represents a promising strategy in cancer management by reducing chemotherapy resistance and associated side effects. Silymarin (SLM) has been extensively investigated due to its potent antioxidant properties and demonstrated efficacy against cancer cells. Under certain conditions however, polyphenolic compounds may also exhibit prooxidant activity by elevating intracellular reactive oxygen species (ROS), which can harm the target cells. In this study, we hypothesized that the simultaneous administration of iron (Fe) could alter the antioxidant characteristic of SLM nanoliposomes (SLM Lip) to a prooxidant state. Hence, we first developed a SLM Lip preparation using lipid film method, and then investigated the anti-oxidant properties as well as the cytotoxicity of the liposomal preparation. We also explored the efficacy of concomitant administration of iron sucrose and SML Lip on the tumor growth and survival of mice bearing tumors. We observed that exposing cells to iron, and consecutive treatment with SLM Lip (Fe + SLM Lip) could induce greater toxicity to 4 T1 breast cancer cells compared to SLM Lip. Further, Fe + SLM Lip combination demonstrated a time-dependent effect on reducing the catalase activity compared to SLM Lip, while iron treatment did not alter cell toxicity and catalase activity. In a mouse breast cancer model, the therapeutic efficacy of Fe + SLM Lip was superior compared to SLM Lip, and the treated animals survived longer. The histopathological findings did not reveal a significant damage to the major organs, whereas the most significant tumor necrosis was evident with Fe + SLM Lip treatment. The outcomes of the present investigation unequivocally underscored the prospective use of Fe + SLM combination in the context of cancer therapy, which warrants further scrutiny.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"6 ","pages":"Article 100214"},"PeriodicalIF":4.7,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156723000580/pdfft?md5=d929c216eb6a43d3f74997d345fc6735&pid=1-s2.0-S2590156723000580-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92031257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}