Hígor F. Teza, Bernardo P. Vieira, Paulo V. de Faria, Gislaine Hoffmann, Jaime A. Lozano, Jader R. Barbosa Jr.
{"title":"Experimental assessment of a multilayered packed-sphere La–Fe–Si active magnetic regenerator","authors":"Hígor F. Teza, Bernardo P. Vieira, Paulo V. de Faria, Gislaine Hoffmann, Jaime A. Lozano, Jader R. Barbosa Jr.","doi":"10.1016/j.ijrefrig.2024.09.011","DOIUrl":"10.1016/j.ijrefrig.2024.09.011","url":null,"abstract":"<div><div>This study investigates the performance of a multilayered packed-bed active magnetic regenerator (AMR) using spheroidal particles with first-order magnetocaloric properties. The hydraulic performance is assessed via the interstitial friction factor, showing significant underestimation by the Ergun Equation at high mass flow rates. Coefficient adjustments are made to accurately represent the AMR pressure drop, considering particle nonuniformity and structural components, such as layer mesh dividers. This facilitates the pressure drop modeling and provides a means to check the AMR integrity on a routine basis, without requiring AMR disassembly. The thermal performance, evaluated in terms of the regenerator effectiveness, shows a satisfactory cooling potential for practical applications but emphasizes the need for flow control to prevent effectiveness imbalance between hot and cold flows, crucial for optimal operation. The cooling capacity and maximum temperature span are also evaluated, demonstrating that higher mass flow rates yield higher cooling capacities with lower temperature spans, while lower rates achieve higher spans. Varying the blow fraction shows that regenerators at 50% blow fraction achieve 10% higher cooling capacities than at 37.5%. Increasing operational frequency improves cooling by increasing the number of cycles and reducing losses, resulting in a 15% capacity increase between 0.25 and 0.50 Hz. However, this trend may reverse at higher frequencies beyond the experimental limits. While this study improves the understanding of the hydraulic and thermal performance of packed-bed AMRs, its findings underscore the importance of flow balance and frequency in achieving optimal performance, thus providing insights for future system improvements.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 537-551"},"PeriodicalIF":3.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zongsheng Zhu , Xinghua Liu , Xiaoming Wang , Bin Liu
{"title":"Enhancing efficiency of large cold store refrigeration systems through automated fault identification and intelligent energy optimization","authors":"Zongsheng Zhu , Xinghua Liu , Xiaoming Wang , Bin Liu","doi":"10.1016/j.ijrefrig.2024.09.002","DOIUrl":"10.1016/j.ijrefrig.2024.09.002","url":null,"abstract":"<div><div>Refrigeration systems in large cold stores frequently operate suboptimally due to component faults, leading to significant energy wastage and high carbon emissions. This study introduces a novel procedure that leverages data mining to automatically analyze and identify faults, thereby enhancing the intelligence of refrigeration equipment. The research focused on abnormal suction temperatures of compressors during the defrosting of air coolers in a large cold store. Through theoretical analysis and key data acquisition, the root cause of defrosting issues was traced to the abnormal operation of gas-powered suction stop valves, causing leakage of high-pressure hot gas. Clustering methods, Self-Organizing Maps (SOM), were utilized to classify system states and achieved high accuracy rates of 88.6 % to 93.8 % for the three fault modes during the defrosting process, respectively. The resolution of defrosting faults resulted in an energy consumption reduction of up to 18.3 %, aligning with global sustainability initiatives. The study also evaluated the carbon emission reduction, providing a comprehensive approach to improving the efficiency and environmental impact of cold store operations.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 411-422"},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of solutes and additives on ice growth prevention in ice slurry production","authors":"Hiroyuki Kumano , Takashi Morimoto , Kohta Tanaka , Toshie Koyama , Masayuki Tanino","doi":"10.1016/j.ijrefrig.2024.09.009","DOIUrl":"10.1016/j.ijrefrig.2024.09.009","url":null,"abstract":"<div><div>Ice slurry is a promising functional fluid with high thermal energy density and high heat transfer rate. However, large ice particles in the ice slurry can cause blocking of tubes during ice slurry flow. Therefore, it is preferable to use fine ice particles to prepare ice slurry in many fields. In this study, ice slurries were generated from supercooled solutions containing additives, such as anti-freeze protein and polyvinyl alcohol, to prevent the increase in the ice particle size in the formation process of the ice slurry. The concentration of the solute and amount of the additive were varied as experimental parameters, and the size of the ice particles was evaluated. The average area of the ice particles decreased with the addition of the additives. In particular, anti-freeze protein was effective for generating fine ice particles in the ice slurry. However, the effects of the additives became weaker for higher concentration of the solute, and the size of the ice particles was almost the same regardless of the concentration of the solute and the amount of the additive. Moreover, it was found that particular properties, such as the freezing-point depression, kinematic viscosity of the solution, and effective latent heat of fusion, did not affect the size of the ice particles in the ice slurry generation process.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 389-398"},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frost crystal growth behavior on a hydrophilic surface over a wide range of cold surface temperature","authors":"Yanxia Li, Zhenqiang Wang, Zhongliang Liu, Shengyuan Zhao","doi":"10.1016/j.ijrefrig.2024.09.014","DOIUrl":"10.1016/j.ijrefrig.2024.09.014","url":null,"abstract":"<div><div>The initial frosting phenomenon is a discontinuous phase nucleation process, the cold surface temperature and properties have a decisive influence on this phenomenon, especially in the initial frosting stage. With the development of aerospace and energy transportation technology, frost formation at low temperatures (-100 °C∼-30 °C) and ultra-low temperatures (-273 °C∼-100 °C) has gradually attracted the attention of researchers. In this paper, the initial frosting phenomena on hydrophilic surfaces with a contact angle of 10° (CA= 10°) and ordinary (CA= 95°) surfaces are studied experimentally in a wide range of cold surface temperatures (-190 °C∼-30 °C). Four modes are confirmed: cold surface condensation frosting, cold surface sublimation frosting, air boundary layer condensation frosting and air boundary layer sublimation frosting. It is also found that the four frosting modes do not appear in turn with the decrease of the cold surface temperature, but two or more frosting modes appear at the same time. And the surface contact angle has an important influence on the frosting mode. The initial frost crystal morphology mainly depends on the cold surface temperature and the corresponding frosting mode. Four different forms of frost crystals are observed: hexagonal prism (feather), branch (pine needle), cluster (shrub) and floc (grape), in which the cluster frost crystal is more sensitive to the surface contact angle and can appear in different temperature ranges due to different contact angles. Based on the statistics of the size, quantity, and distribution of the initial frost crystals, it is found that -70 °C is a major turning point for frost formation from the cold surface sublimation frosting to the air boundary layer sublimation frosting, and an important change has taken place near this point. Furthermore, it affects the shape and size distribution of frost crystals. These findings are of great significance for the study and understanding of frost crystal growth mechanism in the initial stage of frost formation at low and ultra-low temperatures.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 264-275"},"PeriodicalIF":3.5,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel L. Podgaietsky , Adriano F. Ronzoni , Christian J.L. Hermes
{"title":"A model-based design approach for low-pressure axial fan blades considering the air flow system characteristics","authors":"Gabriel L. Podgaietsky , Adriano F. Ronzoni , Christian J.L. Hermes","doi":"10.1016/j.ijrefrig.2024.09.003","DOIUrl":"10.1016/j.ijrefrig.2024.09.003","url":null,"abstract":"<div><div>The paper puts forward a computer methodology for designing low-pressure axial fan blades for small-capacity refrigeration applications. Based on the blade element theory (BET), the airfoil efficiency of the airfoil, the principles of mass and momentum conservation together with empirical correlations for the flow irreversibilities, a mathematical model was devised for screening the blade geometric parameters (e.g., radial chord and pitch variation, and hub radius) by varying the induction coefficient distribution for a given fan diameter, motor speed, and airflow system characteristic curve. The best blade configuration is selected by means of a tailor-made optimization algorithm and undergoes a series of linear transformations for translating the fan parametrization into a CAD drawing. Two new fan blades were designed, one for maximum blade efficiency (MBE) and another for maximum airflow rate (MAR). In comparison with the free-swirl design approach, a standard procedure adopted in the open literature, the proposed blades showed an efficiency and an airflow by 20 % (MBE) and 14 % (MAR) higher than the reference. The airflow characteristics of the new designs were also assessed by means of wind-tunnel testing, which confirmed an increase of 11 % in the case of MBE design, while an enhancement of 10 % was observed in the case of MAR design.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 484-491"},"PeriodicalIF":3.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linlin Wang , Yu He , Jiabao Ren , Dan Wang , Baomin Dai , Zhe Zhang
{"title":"Simulation of diffusion of combustible refrigerants R1234yf and R290 leakage in automotive air conditioning","authors":"Linlin Wang , Yu He , Jiabao Ren , Dan Wang , Baomin Dai , Zhe Zhang","doi":"10.1016/j.ijrefrig.2024.09.012","DOIUrl":"10.1016/j.ijrefrig.2024.09.012","url":null,"abstract":"<div><div>Electric vehicles that utilize a heat pump system have a refrigerant charge increase of at least 400 g compared to traditional fuel vehicle air conditioning systems. If combustible refrigerants are used, the risk of combustion increases when the refrigerant leaks and spreads to the passenger compartment. This paper dynamically monitored the volume concentrations of combustible refrigerants R1234yf and R290 as they leaked and entered the passenger compartment accompanied by air supply by numerical simulation. The results indicated that refrigerants are more prone to accumulate in the rear row than in the front. After a leak, the average volume concentration of R1234yf at the four air outlets was 1.58 %, and 3.36 % for R290. at the breathing points of four passengers, the average volume concentration was 0.99 % for R1234yf and 2.39 % for R290. Near the feet of the passengers, the average volume concentration was 0.95 % for R1234yf and 2.27 % for R290. The highest volume concentration of R1234yf in the passenger compartment was below its LFL, whereas all monitoring points for R290 exceeded its LFL. Compared to experimental data, the difference in maximum refrigerant volume concentration was approximately 1.2 %.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 326-333"},"PeriodicalIF":3.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongmei Leng , Peiru Li , Fanchen Kong , Hainan Zhang , Tianyang Yang , Mingsheng Tang , Huiming Zou , Changqing Tian
{"title":"Experimental and numerical study on single ice crystal growth of deionized water and 0.9 % NaCl solution under static magnetic field","authors":"Dongmei Leng , Peiru Li , Fanchen Kong , Hainan Zhang , Tianyang Yang , Mingsheng Tang , Huiming Zou , Changqing Tian","doi":"10.1016/j.ijrefrig.2024.09.005","DOIUrl":"10.1016/j.ijrefrig.2024.09.005","url":null,"abstract":"<div><div>Ice crystal growth of water and its aqueous solution is the key phenomenon in food freezing. In this research, the effect of static magnetic field (SMF) on single ice crystal growth was investigated combing experiment and simulation. The ice crystal growth of water and NaCl-water solution under 0 - 15 mT SMF intensities were studied. The UV absorbance of water after SMF treatment was measured. Phase field model was adopted to simulate the ice crystal growth. The results show that SMF significantly inhibited the growth rate, while had little effect on the morphology and growth direction of ice crystals. SMF had a certain enhancement effect on the UV absorbance of deionized water. The proposed model could well simulate the ice crystal growth under different SMF intensities. Combining experimental and simulation results, it can be inferred that SMF inhibits ice crystal growth by enhancing original hydrogen bonds and reducing free energy.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 297-306"},"PeriodicalIF":3.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"4E Analysis of a new cogeneration system coupling heat pumps and PEMFC in summer and winter modes","authors":"Dahan Sun , Jiang Qin , Zhongyan Liu","doi":"10.1016/j.ijrefrig.2024.09.004","DOIUrl":"10.1016/j.ijrefrig.2024.09.004","url":null,"abstract":"<div><div>In response to the ongoing optimization of energy systems and the promotion of clean energy, this paper introduces a new high-efficiency cogeneration system based on proton exchange membrane fuel cells (PEMFC). Named the Transcritical Combined Cooling Heating and Power with Subcooling Coupled ORC (CPTSO) system, it undergoes energy, exergy, economic, and environmental (4E) assessments to evaluate its performance in both summer and winter modes. This paper also analyzes the effects of key factors on the new system's performance. The results indicate that the new system performs more effectively overall and achieves faster cost recovery during winter operations. With varying degrees of subcooling (ΔT<sub>subcooling</sub>), the system's average energy efficiency, fuel energy saving ratio (FESR), exergy efficiency, and pollutant reduction in winter are 60.97 %, 4.51 %, 17.16 %, and 33.35 % higher, respectively, than in summer. Changes in the main evaporation temperature (T<sub>e</sub>) result in winter improvements of 74.37 % in energy efficiency, 16.86 % in FESR, 17.6 % in exergy efficiency, and 45.5 % in pollutant reduction compared to summer. Similarly, adjustments to the outlet temperature of the gas cooler (T<sub>g</sub>) lead to winter increases of 56.75 % in energy efficiency, 0.49 % in FESR, 17.1 % in exergy efficiency, and 29.3 % in pollutant reduction over summer values.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 438-453"},"PeriodicalIF":3.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kang Li , Jiayun Hu , Chao Li , Xuejin Zhou , Ni Liu , Hua Zhang , Binlin Dou , Qize He , Ran Tu , Lin Su , Soheil Mohtaram
{"title":"Refined one-dimensional modeling and experimental validation of scroll compressor with vapor injection for electric vehicles","authors":"Kang Li , Jiayun Hu , Chao Li , Xuejin Zhou , Ni Liu , Hua Zhang , Binlin Dou , Qize He , Ran Tu , Lin Su , Soheil Mohtaram","doi":"10.1016/j.ijrefrig.2024.09.007","DOIUrl":"10.1016/j.ijrefrig.2024.09.007","url":null,"abstract":"<div><div>Vapor injection technology represents a highly promising avenue for enhancing the efficiency of heat pump systems within electric vehicles, especially in challenging cold ambient conditions. Although a simplified isentropic process is commonly employed to assess the thermodynamic functioning of scroll compressors with vapor injection (SCVI), it diverges significantly from actual operational dynamics. This study introduces a sophisticated 1D mathematical model that incorporates key factors such as internal leakage and thermal losses, thereby providing a more accurate representation of SCVI's operational realities. The research includes comprehensive performance evaluations of a short wrap profile SCVI, with a specific focus on low-temperature ambient conditions, supported by rigorous experimental validation. Comparative analyses against non-injection scenarios reveal notable enhancements, including a maximum 17.2 % increase in mass flow, a 10.5 % rise in heating capacity, and a 2.15 % improvement in heating COP. Both the simplified isentropic process calculation model and the enhanced 1D mathematical model are utilized to analyze compressor operations. The integration of internal leakage and heat loss considerations significantly narrows the gap between calculated and experimental results for heating capacity and discharge temperature, reducing discrepancies from nearly 20 % to a mere 4 %. This refined mathematical model demonstrates a high level of alignment with experimental data, achieving an accuracy within 5 % when assessing the compressor's real-world operational dynamics.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 469-483"},"PeriodicalIF":3.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic analysis of a new tandem dual-temperature air source heat pump with ejector","authors":"Yuefen Gao , Wenjie Yang , Yiying Zhang","doi":"10.1016/j.ijrefrig.2024.08.027","DOIUrl":"10.1016/j.ijrefrig.2024.08.027","url":null,"abstract":"<div><div>This paper presents a conventional air source heat pump cycle (CHPC) and two dual-temperature air source heat pump cycles (DTHPC1 and DTHPC2). DTHPC1 employs two condensers, while DTHPC2 adds an extra compressor and combines the ejectors on top of DTHPC1. Compared with the conventional heat pump cycle, the new dual-temperature heat pump DTHPC2 can provide hot water at one additional temperature and still have high performance. In this paper, the refrigerants R1234yf and R1234ze(E) were selected as suitable for the cycle conditions. The cycle performance under different conditions was simulated and compared based on energy analysis methods and exergy analysis methods. The main performance parameters included COP<sub>h</sub>, <em>η<sub>ex</sub></em>, etc. The results demonstrate that the COP<sub>h</sub> and <em>η<sub>ex</sub></em> of DTHPC2 and DTHPC1 are greater than those of CHPC under identical conditions. Specifically, at an ambient temperature of approximately -10 °C, high-temperature hot water of approximately 65 °C, and low-temperature hot water of approximately 35 °C, the COP<sub>h</sub> of DTHPC2 and DTHPC1 increased by 45% and 32.7%, respectively, in comparison to CHPC. Similarly, the <em>η<sub>ex</sub></em> of DTHPC2 and DTHPC1 increased by 27.1% and 28.9%, respectively.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 307-317"},"PeriodicalIF":3.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}