Lyudmyla Karabanova, O. Gonchar, Stanislav Nesin, Yuri Savelyev
{"title":"Nanocomposites based on polyurethane and modified montmorillonite: thermodynamic approach to reinforcement","authors":"Lyudmyla Karabanova, O. Gonchar, Stanislav Nesin, Yuri Savelyev","doi":"10.1080/1023666X.2023.2250137","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2250137","url":null,"abstract":"Abstract Nanocomposites based on thermoplastic polyurethane and montmorillonite (Mt) modified with oligourethaneammonium chloride were synthesized. The nanocomposites were obtained by the method solution exfoliation. The influence of the filler content on the thermodynamic of interactions, physical and mechanical properties, the structure and morphology of the created nanocomposites was investigated. The investigations have shown that the free energy of mixing the filler and the matrix during the formation of the nanocomposites decisively determines the physical and mechanical properties of the created nanocomposites. In case of thermodynamic compatibility between the matrix and the filler, dense surface layers of the matrix on the filler, high-quality polymer–filler contacts in the system are formed, which leads to the creation of nanocomposites with increased parameters of physical and mechanical properties. Mt modified with urethane-containing compounds can form strong hydrogen bonds with the polar polymer matrix and this allow to exfoliate the Mt up to the plates","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89461223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue-Li Liu , Shi-Ye Xu , Jin Yang , Si-Jin Li , Yi-Wen Chen
{"title":"Synthesis and characterization of glyceryl starch and determination of molar substitution","authors":"Xue-Li Liu , Shi-Ye Xu , Jin Yang , Si-Jin Li , Yi-Wen Chen","doi":"10.1080/1023666X.2023.2221873","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2221873","url":null,"abstract":"<div><p>In this work, glyceryl starch was prepared by changing the reactant ratio (v/w) of etherifying agent/starch using chlorinated glycerol as etherifying agent. The molar substitution of glyceryl starch was determined. The modified colorimetric method for the determination of molar substitution was described. The glyceryl starch was characterized by using FT-IR and <sup>1</sup>H NMR spectroscopy. Experimental analyses were performed to investigate the effect of dihydroxypropylation on a range of starch properties, including degree of crystallinity, granule morphology, paste clarity, and retrogradation stability and compare them with those of the native corn starch.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sudhakar Uppalapati , J. Bensam Raj , N. Natarajan , M. Adam Khan
{"title":"Development and assessment on hemp–carbon–basalt fibre base hybrid composite with organic fillers for structural applications","authors":"Sudhakar Uppalapati , J. Bensam Raj , N. Natarajan , M. Adam Khan","doi":"10.1080/1023666X.2023.2221483","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2221483","url":null,"abstract":"<div><p>Hybrid composites are in increasing demand for structural applications. The created composite material is anticipated to possess fundamental qualities and a typical load-bearing capacity. The development of a hybrid composite hemp-epoxy polymer material with carbon and/or basalt fiber reinforcement is proposed in this study. With carbon fiber at 6%, basalt fiber at 6%, and carbon-basalt at 2 + 4% in the reinforcement, the weight percentage of the fiber reinforcement was altered for 15, 20, and 25% of hemp fiber in the composite. Additionally, natural fillers like coconut shell powder and calcium carbonate were incorporated into the matrix material. To create the composite with various combinations of fiber reinforcement, industrial standards processes were followed. In comparison to other compositions, the hemp-carbon fiber sample (A3) has a maximum strength of 104 MPa. The same composition also has a maximum stiffness of 197 N/mm, which may be attributed to the matrix material’s high bonding strength (67 weight percent). The shore hardness of the hemp-carbon fiber composite is likewise at its highest, falling between 90 and 98 on the hardness scale. The results revealed that composites composed of carbon and hemp fibers have superior mechanical characteristics to basalt fiber reinforcement. To investigate the material behavior, an electron microscope will be used to examine the cracked surfaces. The material will be suggested for use in structural applications based on the findings.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49867066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuying Xiao , Hailong Li , Menglan Yu , Lisheng Shi , Jingshan Zeng , Mengru Liu
{"title":"Characterization of natural cellulosic fibers from the bark of the Edgeworthia chrysantha plant","authors":"Yuying Xiao , Hailong Li , Menglan Yu , Lisheng Shi , Jingshan Zeng , Mengru Liu","doi":"10.1080/1023666X.2023.2217559","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2217559","url":null,"abstract":"<div><p>In this paper, the structural, morphological, and mechanical properties of <em>Edgeworthia chrysantha</em> phloem fibers are characterized. The chemical composition of <em>Edgeworthia chrysantha</em> mainly includes cellulose (47.13%), hemicelluloses (15.20%), and lignin (7.30%). X-ray diffraction analysis shows that <em>Edgeworthia chrysantha</em> phloem fiber has high crystallinity (76.38%) and small grain size (3.13 nm). Thermogravimetric analysis shows that the maximum degradation temperature of <em>Edgeworthia chrysantha</em> phloem fiber is 351 °C. The results of scanning electron microscopy and atomic force microscopy show that <em>Edgeworthia chrysantha</em> phloem fiber has an obvious hierarchical structure and a relatively rough surface. Additionally, the elastic modulus (6.04–15.21 GPa) and hardness (0.17–0.88 GPa) of <em>Edgeworthia chrysantha</em> phloem fiber were measured by nanoindentation. The result provided a theoretical basis for the high-value application of <em>Edgeworthia chrysantha</em> phloem fibers, especially in papermaking, textiles, fiber-reinforced material and other applications.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mutual influence of the morphology and growth kinetics in binary crystalline blends of poly(butylene terephthalate) and polyarylate","authors":"Wei-Chi Lai , Shih-Huang Tung , Wen-Bin Liau","doi":"10.1080/1023666X.2023.2217560","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2217560","url":null,"abstract":"<div><p>The spherulitic morphology and crystallization behaviors of binary crystalline blends of poly(butylene terephthalate) (PBT) and polyarylate (PAr), based on bisphenol A, (27:73 isophthalic:terephthalic acids), are investigated herein. PBT and PAr crystallize simultaneously or sequentially; various crystallization behaviors and morphologies are observed. In the PBT-rich blends, PAr does not crystallize; the PBT spherulites coarsen as the PAr concentration increases. Non-crystallizable PAr is trapped inside the spherulites. The PBT spherulitic growth rate decreases when PAr is added and remains constant thereafter. For the 50/50 blends, PBT and PAr crystallize simultaneously, and their spherulites co-exist separately. The spherulitic growth rate of PBT increases with time while PAr is crystallizing, but it remains constant if PAr crystallizes prior. At a crystallization temperature of 250 °C, only PAr crystallizes; the non-crystallizable PBT is expelled from the PAr spherulites because the crystallization rate of PAr is low. The spherulites of PAr do not fill the space in the final crystallization stage. The crystallization rate of the binary crystalline PBT/PAr blends was notably influenced by the prior crystallization of the other component, and was due to the change of the amorphous composition in addition to the constraints of the crystals on the chain mobility.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance improvement of a modified copolymer as an antiscalant and microbial growth inhibitor","authors":"Fatemeh Karchoubi , Mahsa Baghban Salehi , Reza Panahi , Shahriar Salemi Parizi","doi":"10.1080/1023666X.2023.2212565","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2212565","url":null,"abstract":"<div><p>Prevention and control of calcium sulfate scale formation and microbial growth accumulation in water handling systems is one of the challenging operations to avoid corrosion and flow restriction through equipment. This paper examines modified low-molecular-weight Maleic Anhydride (MAn) copolymerized by Acrylamide (AAm), which was successfully synthesized, developed, and analyzed as a multifunctional non-phosphorous antiscalant to overcome these problems. The structure, morphology, and thermal property of poly(MAn-co-AAm) were characterized. The intended structure and copolymerization were confirmed through GPC, FT-IR, SEM, and EDX analyses. The high thermal resistivity up to 400<!--> <!-->°C was observed via TGA analysis. The standard NACE TM0374 methodologies were applied to evaluate the scale controlling capacity of poly(MAn-co-AAm) at various dosages (1–20 ppm), temperatures (50–90 °C), and regular intervals of 24–72 h. Interestingly, for low values of poly(MAn-co-AAm), efficiency was found 100% at the third level within the standard state. Further SEM and XRD analyses emphasized the validity of successful inhibition of calcium sulfate scale formation in comparison with other antiscalant agents, even at very low concentrations. In addition, antibacterial properties of poly(MAn-co-AAm) were investigated against <em>Staphylococcus aureus (S. aureus)</em> and <em>Escherichia coli (E. coli)</em>. The results revealed that the developed copolymer possesses a wide antibacterial activity against both Gram-negative and Gram-positive bacteria. With this in mind, poly(MAn-co-AAm) is believed to be an effective and economical multifunctional antiscalant in cooling water treatment systems.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Wei , Zhiqiang Li , Yanan Zhang , Yumin Xia , Yanping Wang , Yimin Wang
{"title":"Structure and properties of aromatic naphthalene thermotropic liquid crystal copolyester/MWCNT composites","authors":"Peng Wei , Zhiqiang Li , Yanan Zhang , Yumin Xia , Yanping Wang , Yimin Wang","doi":"10.1080/1023666X.2023.2211727","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2211727","url":null,"abstract":"<div><p>Aromatic naphthalene thermotropic liquid crystal copolyesters (N-TLCP) have strong intermolecular forces and possess excellent comprehensive properties. In this study, the N-TLCP/MWCNT nanocomposites derived from 6-hydroxy-2-naphthoic acid (HNA), 2,6-naphthalene dicarboxylic acid (NDA), terephthalic acid (TA), 4,4′-dihydroxy biphenyl (BP) and carboxyl MWCNT were prepared via in situ “one-pot” melt polymerization method. The structure and properties of N-TLCP/MWCNT composites were fully analyzed. The interaction between MWCNT and TLCP matrix was confirmed by FTIR, XPS, Raman spectrum and rheometric measurements; and the strong interaction was observed for addition of a small amount of MWCNT (<0.5 wt%), which was attributed to the fact that the functional group COOH on the surface of MWCNTs enhances the dispersion state of the CNTs and molecular interaction through hydrogen bond/chemical covalent bonds. As a result, the glass transition temperature, melting temperature, thermal stability and mechanical properties of the N-TLCP/MWCNT composite was improved. However, more addition of MWCNT would tend to aggregate and impact the molecular weight and structure of the N-TLCP by the chemical reaction between its COOH group and OH group of the N-TLCP, which is not favor for improving the mechanical properties.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced hydrophobic performance of UV-curable palm oil polyurethane by fluoroacrylate monomer","authors":"Mohamad Ismail Mohamad Isa, S. N. H. Mustapha","doi":"10.1080/1023666X.2023.2244823","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2244823","url":null,"abstract":"Abstract Driven by the versatility of crosslinked complex network formed by the reaction of double bonds during photopolymerization, ultraviolet (UV) curable palm oil polyurethane (POPU) was modified by the addition of fluoroacrylate monomer to increase its hydrophobicity properties. Fourier transform infrared spectroscopy showed a successful attachment of the fluoro group to POPU. Fluoroacrylate palm oil polyurethane (FPOPU) also showed good hydrophobic properties as FPOPU-6% has the highest contact angle which is 108.22°. In the sliding angle test, FPOPU-2% provided the highest roll-off properties with the lowest angle of incline which was 16.6°. The addition of fluoroacrylate at 6% also lowered the water absorption properties of POPU from 4.94% to 3.98%. To further investigate the cause of hydrophobicity increase, scanning electron microscopy and atomic force microscopy analysis were conducted. The morphology showed fluorine component migration increased the roughness of the coating by the coating’s hydrophobicity performance. Overall, fluoroacrylate monomer addition successfully improved the hydrophobic properties of POPU.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79893260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mochizuki, Y. Miwa, C. Yahata, Haruyo Saito, Yoshiki Oda
{"title":"Properties of hydrated poly(2-methoxyethyl acrylate) observed by 13C-nuclear magnetic resonance spectroscopy","authors":"A. Mochizuki, Y. Miwa, C. Yahata, Haruyo Saito, Yoshiki Oda","doi":"10.1080/1023666X.2023.2248709","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2248709","url":null,"abstract":"Abstract It is well-known that poly(2-methoxyethyl acrylate) (PMEA) exhibits excellent blood compatibility and various investigations have examined the underlying mechanism of this compatibility in terms of the water structure in PMEA and/or inherent PMEA properties. However, information regarding the dynamic properties of the PMEA remains limited. This study was performed to clarify the effect of water molecules on the structure and dynamic properties of hydrated PMEA by comparing dry PMEA using temperature-variable 13C nuclear magnetic resonance spectroscopy (13C-NMR) with a solution probe at 15 –45 °C. Hydration changed the chemical shift values of the four carbons in the PMEA side chain (−COOCH2 CH2OCH3). Investigations of spin-lattice relaxation times and resonance peak widths showed that hydration increased PMEA mobility and the side chain mobility markedly changed at approximately 30 °C, especially in dry PMEA.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90147881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
En-De Chu, Hsi-Hsien Chiang, Shuei-De Huang, Po-Yen Chen, Yu-Tso Liao, Philip Nathaniel, Chein-Chun Han, F. Lo, Hsiang-Chih Chiu
{"title":"Influence of structural disorder on the elastic, frictional, and electrical properties in functionalized polyaniline thin films at the nanoscale investigated by atomic force microscopy","authors":"En-De Chu, Hsi-Hsien Chiang, Shuei-De Huang, Po-Yen Chen, Yu-Tso Liao, Philip Nathaniel, Chein-Chun Han, F. Lo, Hsiang-Chih Chiu","doi":"10.1080/1023666X.2023.2242638","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2242638","url":null,"abstract":"Abstract We investigated the influence of structural order on the elastic, frictional, and electrical properties of butylthio-functionalized PANI (PANI-SBu) films by atomic force microscopy (AFM)-based techniques, including PeakForce quantitative nanomechanical mapping, friction force microscopy, and conductive AFM. The PANI-SBu films were prepared by the drop-cast method from the solution of PANI-SBu in N-methyl-2-pyrrolidone that was continuously stirred. The PANI-SBu films were fabricated after different solution stirring times. The shear force during the mechanical stir will disentangle the highly-coiled PANI-SBu polymer chains in the solution. Therefore, the polymer chains in solution cast on the substrates will progressively self-assemble into a more organized structure when solvents evaporate, leading to PANI-SBu films with improved structural order. Our AFM studies discovered that more structurally-ordered PANI-SBu films have substantially larger out-of-plane elastic moduli and charge mobility but smaller kinetic friction coefficients. The denser packing of polymer molecules increases film elasticities and promotes chain-to-chain charge transport. In addition, stiffer PANI-SBu film surfaces are more difficult to deform when sheared by the sliding AFM probe, resulting in less energy dissipation during AFM friction measurements. Thus, smaller kinetic friction coefficients were found. Conversely, more structurally-disordered PANI-SBu films have smaller elasticity and charge mobility but larger kinetic friction coefficients. Our results demonstrate that it is possible to manipulate the elastic, frictional, and electrical properties of PANI-SBu films by controlling their structural order, which can be essential for developing polymer-based composite materials and flexible electronic devices.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84129947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}