{"title":"Dynamic mechanical analysis of additively manufactured cenosphere-filled PETG syntactic foam composite","authors":"Jitendra Kumar , Sushant Negi","doi":"10.1080/1023666X.2024.2404906","DOIUrl":null,"url":null,"abstract":"<div><div>Syntactic foam composite (SFC) has the potential to substitute the conventional material used in damage-tolerance, thermal insulation, and weight-sensitive applications such as automotive parts, submarine structures, etc. Here, SFCs were developed by varying the weight fraction of cenosphere (CS) content from 0-40 wt. % in a polyethylene terephthalate glycol (PETG) matrix. This investigation provides the terse behavior of the viscoelastic properties of 3D-printed PETG/CS foam composites. The thermogravimetric analysis (TGA) results showed that the initial degradation temperature (T<sub>i</sub>) and the temperature at 50% mass loss (T<sub>50</sub>) of the composite filament increased with the addition of CS particles, indicating improved thermal stability. The dynamic mechanical analysis (DMA) results revealed that the storage modulus of SFC increased with increasing cenosphere content. The foam composite’s glass transition temperature (78.9 ± 0.35 °C) is lower by 4 °C than pure PETG. This underscores the potential of the developed syntactic foam composite to effectively utilize industrial waste fly ash through 3D printing routine, thereby promoting sustainable manufacturing practices.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 8","pages":"Pages 647-657"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000441","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Syntactic foam composite (SFC) has the potential to substitute the conventional material used in damage-tolerance, thermal insulation, and weight-sensitive applications such as automotive parts, submarine structures, etc. Here, SFCs were developed by varying the weight fraction of cenosphere (CS) content from 0-40 wt. % in a polyethylene terephthalate glycol (PETG) matrix. This investigation provides the terse behavior of the viscoelastic properties of 3D-printed PETG/CS foam composites. The thermogravimetric analysis (TGA) results showed that the initial degradation temperature (Ti) and the temperature at 50% mass loss (T50) of the composite filament increased with the addition of CS particles, indicating improved thermal stability. The dynamic mechanical analysis (DMA) results revealed that the storage modulus of SFC increased with increasing cenosphere content. The foam composite’s glass transition temperature (78.9 ± 0.35 °C) is lower by 4 °C than pure PETG. This underscores the potential of the developed syntactic foam composite to effectively utilize industrial waste fly ash through 3D printing routine, thereby promoting sustainable manufacturing practices.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.