R. Udhayasankar , B. Karthikeyan , K. Murugan , A. Balaji
{"title":"蔗渣/罗望子填料增强的杂化聚合物复合材料的热学和力学性能表征","authors":"R. Udhayasankar , B. Karthikeyan , K. Murugan , A. Balaji","doi":"10.1080/1023666X.2024.2399219","DOIUrl":null,"url":null,"abstract":"<div><div>The development of manufacturing industries is crucial for national progress, with a growing emphasis on green and sustainable practices. This study investigates the development and performance of hybrid polymer composites based on poly lactic acid (PLA) reinforced with lignocellulosic fillers: bagasse fiber (BF), tamarind seed fiber (TSF), <em>Terminalia chebula</em> fiber (TCF), and a hybrid filler of bagasse, tamarind seed, and <em>Terminalia chebula</em> (BTSTCF). Five types of composites were fabricated with varying filler compositions: PLA, PLA/BF, PLA/TSF, PLA/TCF, and PLA/BTSTCF, consisting of 30% BF, TSF, or TCF with 70% PLA, and an additional 10% of each filler in the BTSTCF composite. The results demonstrated that the PLA/BTSTCF hybrid composite outperformed others regarding mechanical strength, thermal stability, and interfacial adhesion. Specifically, it exhibited superior flexural strength, impact strength, and tensile strength. The findings indicate that incorporating a combination of bagasse, tamarind seed, and <em>Terminalia chebula</em> fillers into PLA significantly enhances its properties and performance. This study contributes to advancing sustainable and green manufacturing practices and holds promise for economic growth through the development of high-performance, eco-friendly materials.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid polymer composites of Terminalia chebula filler reinforced thermal and mechanical characterization of bagasse/tamarind seed\",\"authors\":\"R. Udhayasankar , B. Karthikeyan , K. Murugan , A. Balaji\",\"doi\":\"10.1080/1023666X.2024.2399219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of manufacturing industries is crucial for national progress, with a growing emphasis on green and sustainable practices. This study investigates the development and performance of hybrid polymer composites based on poly lactic acid (PLA) reinforced with lignocellulosic fillers: bagasse fiber (BF), tamarind seed fiber (TSF), <em>Terminalia chebula</em> fiber (TCF), and a hybrid filler of bagasse, tamarind seed, and <em>Terminalia chebula</em> (BTSTCF). Five types of composites were fabricated with varying filler compositions: PLA, PLA/BF, PLA/TSF, PLA/TCF, and PLA/BTSTCF, consisting of 30% BF, TSF, or TCF with 70% PLA, and an additional 10% of each filler in the BTSTCF composite. The results demonstrated that the PLA/BTSTCF hybrid composite outperformed others regarding mechanical strength, thermal stability, and interfacial adhesion. Specifically, it exhibited superior flexural strength, impact strength, and tensile strength. The findings indicate that incorporating a combination of bagasse, tamarind seed, and <em>Terminalia chebula</em> fillers into PLA significantly enhances its properties and performance. This study contributes to advancing sustainable and green manufacturing practices and holds promise for economic growth through the development of high-performance, eco-friendly materials.</div></div>\",\"PeriodicalId\":14236,\"journal\":{\"name\":\"International Journal of Polymer Analysis and Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Analysis and Characterization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000453\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000453","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Hybrid polymer composites of Terminalia chebula filler reinforced thermal and mechanical characterization of bagasse/tamarind seed
The development of manufacturing industries is crucial for national progress, with a growing emphasis on green and sustainable practices. This study investigates the development and performance of hybrid polymer composites based on poly lactic acid (PLA) reinforced with lignocellulosic fillers: bagasse fiber (BF), tamarind seed fiber (TSF), Terminalia chebula fiber (TCF), and a hybrid filler of bagasse, tamarind seed, and Terminalia chebula (BTSTCF). Five types of composites were fabricated with varying filler compositions: PLA, PLA/BF, PLA/TSF, PLA/TCF, and PLA/BTSTCF, consisting of 30% BF, TSF, or TCF with 70% PLA, and an additional 10% of each filler in the BTSTCF composite. The results demonstrated that the PLA/BTSTCF hybrid composite outperformed others regarding mechanical strength, thermal stability, and interfacial adhesion. Specifically, it exhibited superior flexural strength, impact strength, and tensile strength. The findings indicate that incorporating a combination of bagasse, tamarind seed, and Terminalia chebula fillers into PLA significantly enhances its properties and performance. This study contributes to advancing sustainable and green manufacturing practices and holds promise for economic growth through the development of high-performance, eco-friendly materials.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.