International Journal of Polymer Analysis and Characterization最新文献

筛选
英文 中文
Methylene blue adsorption on vanadium pentoxide nanorods dispersed in starch-grafted polyacrylonitrile 淀粉接枝聚丙烯腈中分散的五氧化二钒纳米棒对亚甲基蓝的吸附
IF 1.9 4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-11-20 DOI: 10.1080/1023666x.2023.2274661
Ahmed Kangmennaa, Henritta Yakubu, Agnes Tutuwaa, Charity Ohemaa Agyapong, Mandela Toku, Eric Selorm Agorku
{"title":"Methylene blue adsorption on vanadium pentoxide nanorods dispersed in starch-grafted polyacrylonitrile","authors":"Ahmed Kangmennaa, Henritta Yakubu, Agnes Tutuwaa, Charity Ohemaa Agyapong, Mandela Toku, Eric Selorm Agorku","doi":"10.1080/1023666x.2023.2274661","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2274661","url":null,"abstract":"A brand-new vanadium pentoxide (V2O5) functionalized starch (St) grafted poly(acrylonitrile) (PAN) adsorbent was synthesized via microwave-assisted graft polymerization method to remove methylene b...","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual modification of natural rubber/halloysite nanotubes composites by silane and maleated natural rubber 硅烷和马来化天然橡胶对天然橡胶/埃洛石纳米管复合材料的双重改性
IF 1.9 4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-11-16 DOI: 10.1080/1023666x.2023.2278234
Abdulhakim Masa, Nabil Hayeemasae
{"title":"Dual modification of natural rubber/halloysite nanotubes composites by silane and maleated natural rubber","authors":"Abdulhakim Masa, Nabil Hayeemasae","doi":"10.1080/1023666x.2023.2278234","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2278234","url":null,"abstract":"As the performance of natural rubber (NR) and halloysite nanotube (HNT) composites is uncertain due to low compatibility between the materials, malleated natural rubber (MNR) is then used as a comp...","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of thermal, crystalline and morphological properties of ellagic acid incorporated PVA, chitosan, PVA/chitosan and PVA/chitosan/gaur gum polymeric films 鞣花酸掺入聚乙烯醇、壳聚糖、聚乙烯醇/壳聚糖和聚乙烯醇/壳聚糖/白胶聚合物薄膜的热性能、结晶性能和形态性能评价
4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-10-26 DOI: 10.1080/1023666x.2023.2270803
Vinayak N. Vanjeri, Vishram D. Hiremani, Naganagouda Goudar, Oshin Jacintha D’souza, Jennifer P. Pinto, Anilkumar R Patil, Shivayogi S. Narasagoudr, Saraswati P. Masti, Ravindra B. Chougale
{"title":"Assessment of thermal, crystalline and morphological properties of ellagic acid incorporated PVA, chitosan, PVA/chitosan and PVA/chitosan/gaur gum polymeric films","authors":"Vinayak N. Vanjeri, Vishram D. Hiremani, Naganagouda Goudar, Oshin Jacintha D’souza, Jennifer P. Pinto, Anilkumar R Patil, Shivayogi S. Narasagoudr, Saraswati P. Masti, Ravindra B. Chougale","doi":"10.1080/1023666x.2023.2270803","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2270803","url":null,"abstract":"AbstractIn the present study, the ellagic acid doped Polyvinyl alcohol (PVA), Chitosan (CS), PVA/CS and PVA/CS/Guar-gum blend films were prepared and coded as EA-1, EA-2, EA-3 and EA-4, respectively. The physicochemical properties of prepared films were analyzed by using different instrumental techniques. The differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) results revealed the good interaction and miscibility among the components of the films. The thermal stability of ellagic acid incorporated PVA film (EA-1) shown more thermal stability in contrast with other films confirmed by thermogravimetric analysis (TGA) analysis. From the results of X-ray diffraction (XRD) study, the increased amorphous nature was observed for the EA-3 and EA-4 films. Surface morphology was analyzed by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) which illustrates that prepared films exhibits smooth and homogeneous surface after blending with ellagic acid. The results obtained by measuring water contact angles (WCA) revealed that all the films have hydrophilic nature. All the prepared films have exhibited good mechanical properties, hence prepared films can act as promising material for food packaging application.Keywords: Polyvinyl alcoholchitosanguargumellagic acidblend films AcknowledgmentsThe authors gratefully acknowledge the facilities provided by University Science Instruments Center (USIC), DST-SAIF and DST PURSE- Phase II Programme, Karnatak University, Dharwad, Karnataka, India, also Dr. Saraswati P Masti Principal investigator DST-SERB Project, No. SB/EMEQ-213/2014, Department of Chemistry, Karnatak Univesity’s, Karnatak Science College, Dharwad, Karnataka, India, for their support to this study.Author contributionAll the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Vinayak N. Vanjeri, Vishram D. Hiremani, Naganagouda Goudar, Oshin D’souza, Jennifer P. Pinto, Anilkumar R Patil, Shivayogi S. Narasagoudr, Saraswati P. Masti, Ravindra B. Chougale. The first draft of the manuscript was written by Vinayak Vanjeri and all the authors commented on previous version of the manuscript. All authors read and approved the final manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementAll data generated or analyzed during this study are included in the article.Additional informationFundingThe authors declare that no funds, grants, or other support were received during the preparation of this manuscript.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136376382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of hydrolyzed keratin-modified rigid polyurethane foams and its thermal stability and combustion performance 水解角蛋白改性硬质聚氨酯泡沫的制备及其热稳定性和燃烧性能
4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-10-26 DOI: 10.1080/1023666x.2023.2270805
Xu Zhang, Simiao Sun, Dehe Yuan, Zhi Wang, Hua Xie, Yinhua Liu
{"title":"Fabrication of hydrolyzed keratin-modified rigid polyurethane foams and its thermal stability and combustion performance","authors":"Xu Zhang, Simiao Sun, Dehe Yuan, Zhi Wang, Hua Xie, Yinhua Liu","doi":"10.1080/1023666x.2023.2270805","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2270805","url":null,"abstract":"AbstractRigid polyurethane foams (RPUFs) were synthesized with hydrolyzed keratin using the “one-step method” of all-water foaming. Thermogravimetric analysis, pyrolysis kinetics analysis, cone calorimetry and smoke density (Ds) were used to investigate the effects of hydrolyzed keratin on thermal stability and combustion performance of RPUFs. The results showed that the modified RPUFs with 12.5 wt% hydrolyzed keratin (RPUF-HK5) had the lowest mass loss, the highest integrated program pyrolysis temperature, the highest activation energy, the lowest Ds (25.32 and 22.57), the highest light transmittance (64.30% and 67.46%), and total heat release (1.85 MJ/m2, 2.18 MJ/m2 and 2.92 MJ/m2), which indicated that RPUF-HK5 had better thermal stability and combustion performance. The current research results provided a useful reference for the preparation of the RPUFs with good thermal stability by bio-based modification.Keywords: Polyurethane foamhydrolyzed keratincombustion performancethermal stability Disclosure statementWe declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.Data availability statementData available on request from the authors. The data that support the findings of this study are available from the corresponding author upon reasonable request.Additional informationFundingThe financial support from Scientific Research Fund of Liaoning Provincial Education Department [Grant No. JYT2020011) is greatly acknowledged.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136376521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on surfactant modified polypyrrole nanostructures and its applications in supercapacitors 表面活性剂修饰聚吡咯纳米结构及其在超级电容器中的应用研究
4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-10-20 DOI: 10.1080/1023666x.2023.2267257
Neelima Dubey
{"title":"A study on surfactant modified polypyrrole nanostructures and its applications in supercapacitors","authors":"Neelima Dubey","doi":"10.1080/1023666x.2023.2267257","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2267257","url":null,"abstract":"","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135570898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal decomposition kinetic study on one-pack formulations of epoxy resin cured with novel phosphorus-containing flame retardant latent curing agents 新型含磷阻燃潜固化剂固化环氧树脂单包配方的热分解动力学研究
4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-10-18 DOI: 10.1080/1023666x.2023.2264604
J. Kamalipour, M. H. Beheshty, M. J. Zohuriaan-Mehr
{"title":"Thermal decomposition kinetic study on one-pack formulations of epoxy resin cured with novel phosphorus-containing flame retardant latent curing agents","authors":"J. Kamalipour, M. H. Beheshty, M. J. Zohuriaan-Mehr","doi":"10.1080/1023666x.2023.2264604","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2264604","url":null,"abstract":"AbstractSeveral phosphorous-containing flame retardant latent curing agents newly derived from 4,4-diamino diphenyl sulfone (DDS) and 4,4-diamino diphenyl methane (DDM) were designed to cure epoxy resin alongside dicyandiamide (Dicy). The thermal decomposition and kinetics of cured one-packed systems were investigated in detail. The epoxy systems were studied under a nitrogen atmosphere by using thermal gravimetric analysis at different heating rates. The kinetics of thermal decomposition was evaluated by Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and Starink methods. The correlation coefficient for all systems obtained by the three above methods was almost equal to one, indicating that these three methods were correctly chosen. The results demonstrated that the activation energy of epoxy/Dicy blended with different phosphorous-containing DDS- and DDM-derived curing agents at a lower degree of conversion decreased by incorporation of the agents while increasing at a higher degree of conversion. The thermodynamic parameters (ΔH*, ΔG*, and ΔS*) of the studied systems were calculated by the obtained activation energy via three kinetics methods. It was found that as the conversion degree and the enthalpy increased, the Gibbs free energy decreased, while entropy changed from negative to positive values.Keywords: Epoxy resinflame retardantdicyandiamideFlynn-Wall-OzawaKissinger-Akahira-SunoseStarinkthermodynamic parameters Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliciting impact of nano-clay reinforcement and processing schemes on polyurethane chain dynamics by gold sputtering patterns (GSPs) 利用金溅射模式(GSPs)研究纳米粘土增强和加工方案对聚氨酯链动力学的影响
4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-09-25 DOI: 10.1080/1023666x.2023.2255024
Mohammad Babar, Gaurav Verma
{"title":"Eliciting impact of nano-clay reinforcement and processing schemes on polyurethane chain dynamics by gold sputtering patterns (GSPs)","authors":"Mohammad Babar, Gaurav Verma","doi":"10.1080/1023666x.2023.2255024","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2255024","url":null,"abstract":"AbstractThis article narrates how processing “bias” affects polymer chain dynamics due to variable 2D-nanofiller interfaces. Importance of this biasing can be assessed by the significant improvement in thermal and mechanical properties we have recently published for polyurethane-2D clay nanocomposite coatings. We intricately look at the nanoscale structure and subsequent interface formation between 2D clay and PU chains to understand the changes in morphology. Polyurethane (PU) chain dynamics was observed through the gold (Au) sputtered patterns in field emission electron microscopy (FESEM) images. These were fitted with circles and our findings confirm the presence of an attractive interface between PU and 2D nanoclay. Circle fitting elicits important data like the critical area (Ac) and critical relative frequency (fc) which are used to evaluate the polymer chain dynamics and morphology. We find that fc is related to circularity, and reinforcing nanoclay to the PU matrix enhances fc by 4.6% and 6.9% with simultaneous use of ultrasonic bath and high shear homogenizer. This is further correlated with the already established methods of small angle X-Ray scattering (SAXS) and Fourier transform infrared (FTIR) spectroscopy to generate a fresh perspective on interfacial interactions in PU-2D clay nanocomposites.Circle fitting treatment FESEM images of polyurethane (PU) nanocomposites. Difference in the gold sputtering patterns (GSPs) of PU on the surface of nanoclay (below) can be clearly observed as compared to the GSPs of bare PU (above).Highlights1 wt% C30B-PU nanocomposite coatings were prepared using 3 processing schemes.FESEM images revealed gold sputtered patterns from the differently processed samples.Circle fitting analysis on GSPs helped in understanding the polymer nanofiller interface.Growth conformation of polymer chains in and around the 2D nanofiller provides fresh perspective into polymer chain dynamics.Keywords: Chain mobilitypolymer conformationattractive interfacereorganizationFESEMdegree of phase separation (DPS)gold sputtering patterns (GSPs)circularity AcknowledgmentsThe authors thank Covestro (India) Private Limited for providing us with the necessary materials on- gratis.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author upon reasonable request.Additional informationFundingWe acknowledge the contribution of SAP (UGC, New Delhi), PURSE (DST, New Delhi) and TEQIP-III grants accorded to Dr. SSBUICET. We acknowledge the financial assistance given by DST-UT (S&T&RE/RP/147/Sanc/09/2017/1123-1129) and DRDO (DMSDE Kanpur) (TR/0569/CARS-130 dated 16/12/2021). We acknowledge the receiving of collaborative grant from Nottingham Trent University (NTU), United Kingdom under the science and technology initiative.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135817818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and characterization of DGEBA-APTES-ZrO2 nanocomposite coatings for anti-corrosion and anti-fouling DGEBA-APTES-ZrO2纳米复合防腐蚀防污涂层的研制与表征
4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-09-11 DOI: 10.1080/1023666x.2023.2254034
Saravanan P, Anandkumar S, Sharmila J, Chamundeeswari M, Suresh S, Nisha P
{"title":"Development and characterization of DGEBA-APTES-ZrO<sub>2</sub> nanocomposite coatings for anti-corrosion and anti-fouling","authors":"Saravanan P, Anandkumar S, Sharmila J, Chamundeeswari M, Suresh S, Nisha P","doi":"10.1080/1023666x.2023.2254034","DOIUrl":"https://doi.org/10.1080/1023666x.2023.2254034","url":null,"abstract":"Abstract Tetraethylenetetramine (TETA), 3-aminopropylethoxysilane-treated ZrO2 nanoparticles, and diglycidyl ethers of bisphenol-A (DGEBA) were used to create an epoxy nanocomposite (DGEBA-APTES-ZrO2). The newly synthesized APTES-ZrO2 was evaluated using FTIR, XRD, SEM, AFM, TEM and elemental analysis for structural and compositional analysis. Due to its resilience in acidic, basic and saline conditions, mild steel is crucial in sectors like shipbuilding and the automobile industry. ZrO2 nanoparticles have excellent corrosion resistance. As a result, it is intended to prepare DGEBA-APTES-ZrO2 for a barrier layer that prevents corrosion on mild steel surfaces. FTIR spectroscopy tests provided proof of DGEBA-APTES-ZrO2-coated mild steel’s ability to limit corrosion and microbiological growth. Using salt spray and an electrochemical impedance technique, corrosion inhibition was evaluated. On mild steel surfaces, DGEBA-APTES-ZrO2 nanohybrid coatings demonstrated excellent corrosion prevention and antifouling.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135980927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UV resistance and biodegradation of PLA-based polymeric blends doped with PBS, PBAT, TPS 掺PBS、PBAT、TPS的聚乳酸基共混物的抗紫外性和生物降解性
IF 1.9 4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-08-24 DOI: 10.1080/1023666X.2023.2218696
Joanna Ludwiczak , Anna Dmitruk , Mateusz Skwarski , Paweł Kaczyński , Piotr Makuła
{"title":"UV resistance and biodegradation of PLA-based polymeric blends doped with PBS, PBAT, TPS","authors":"Joanna Ludwiczak ,&nbsp;Anna Dmitruk ,&nbsp;Mateusz Skwarski ,&nbsp;Paweł Kaczyński ,&nbsp;Piotr Makuła","doi":"10.1080/1023666X.2023.2218696","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2218696","url":null,"abstract":"<div><p>The design of new biodegradable polymers is important for solving the fossil resource and environmental pollution problems associated with conventional plastics. New PLA-based mixtures with the addition of PBAT, PBS and TPS, with different contents, were prepared to investigate their behavior after accelerated aging, as well as their potential for the biodegradation process. Their mechanical properties, mass, hardness, morphology, gloss and color change during UV irradiation progress, have been investigated. The samples were exposed to UV radiation for 21 d, their accelerated aging properties, were assessed weekly and compared with the non-aged samples. The degree of disintegration was determined after soil burial. The results showed that the mechanical properties, especially formability, as well as gloss and color, changed significantly after accelerated aging. All tested matrices are degradable, as shown by soil burial tests. Testing the stability of the functional properties of biodegradable plastics, which are assessed by end users, is important for the wider use of these plastics.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49866706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Thermal stability and dynamic mechanical analysis of nano-biofillers blended hybrid composites reinforced by cellulosic Borassus flabellifer L. fiber 纤维素牛油果纤维增强纳米生物填料混纺复合材料的热稳定性及动态力学分析
IF 1.9 4区 工程技术
International Journal of Polymer Analysis and Characterization Pub Date : 2023-08-18 DOI: 10.1080/1023666X.2023.2251792
Jitesh Kumar Singh, A. Rout
{"title":"Thermal stability and dynamic mechanical analysis of nano-biofillers blended hybrid composites reinforced by cellulosic Borassus flabellifer L. fiber","authors":"Jitesh Kumar Singh, A. Rout","doi":"10.1080/1023666X.2023.2251792","DOIUrl":"https://doi.org/10.1080/1023666X.2023.2251792","url":null,"abstract":"Abstract The aim of this study is to investigate the dynamic mechanical and thermal stability behavior of rice husk nano-biofillers blend epoxy hybrid composites reinforced by Borassus flabellifer L. leaf fiber. The raw Borassus leaf fibers were treated with 5 wt.% NaOH solution to reduce the disadvantages of hydroxyl bonding. Rice husk nano-fillers (RHNFs) were blended with epoxy resin to modify them with 0.25, 0.45, and 0.65 wt.%, respectively, using sonication and mechanical stirring process. The prepared samples were assessed to evaluate the thermal stability, maximum degradation temperature, storage modulus (E′), loss modulus (E″), damping factor (tan δ) and Cole–Cole plot of the composites. EDX spectroscopy was used to confirm the elemental composition of nano-biofillers. The morphology of RHNFs was analyzed using a scanning electron microscope (SEM). The TG analysis confirmed that the 0.45 wt.% RHNFs blended Borassus leaf fiber (BLF) composites exhibited superior thermal stability (371–384 °C). Derivative thermogravimetry (DTG) analysis exposed that the maximum mass-loss degradation temperature of 0.45 wt.% RHNFs blend composites was 411 °C for the first stage and 678 °C for the second stage, which were more than raw and RHNFs blend (0.25 and 0.65 wt.%) composites. Accordingly, improved E′ (959.16–1637.75 MPa), glass transition temperature (T g) from E″ (90.48–97.69 °C) and, T g from tan δ (103.35–109.67 °C) were derived from the modified composites. Owing to the improved dispersion of the nano-filler, the 0.45 wt.% RHNFs blend composites had a homogeneous polymer system, as verified by the Cole–Cole diagram. The analyzed composites are to be used with versatile functionality for their intended purpose.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85494093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信