{"title":"灰葫芦(Benincasa Hispida)果皮颗粒填充环氧树脂复合材料的力学、热学和吸水性能","authors":"","doi":"10.1080/1023666X.2024.2378890","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, bio-composites have attracted much attention due to their potential applications in various industries. The most notable benefits are the product’s low cost, biodegradability, lightweight, availability, and ability to solve environmental issues. The present research utilizes ash gourd (<em>Benincasa hispida</em>) peel, a food waste, as a filler material to produce epoxy (EP) composites. The effect of ash gourd peel particle percentage (ranging from 0 to 25 wt.%) was studied on the developed composites’ mechanical and thermal properties and water absorption behavior. The maximum tensile strength, flexural strength, and shore D hardness were 47.52 MPa, 2409.17 MPa, and 79.6respectively, when the ash gourd peel was 5% by weight in the composite. It was observed that the mechanical characteristics of manufactured bio-composites are negatively affected by the high concentration of ash gourd peel particles in the epoxy matrix. Also, increasing ash gourd peel particle fraction increases the water absorption of composites when immersed in distilled, sea, and tap water. The composite with 5% filler by weight absorbs water at a minimal rate when immersed in seawater. Thermogravimetric analysis was conducted to investigate the newly developed composite’s thermal behavior. In addition, a morphological examination of the fractured surfaces was carried out with assistance from a scanning electron microscope. The work presents ash gourd peel particles as the potential alternative to be used as filler in composites.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical, Thermal, and Water Absorption Behavior of Ash Gourd (Benincasa Hispida) Peel Particles Filled Epoxy Composites\",\"authors\":\"\",\"doi\":\"10.1080/1023666X.2024.2378890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, bio-composites have attracted much attention due to their potential applications in various industries. The most notable benefits are the product’s low cost, biodegradability, lightweight, availability, and ability to solve environmental issues. The present research utilizes ash gourd (<em>Benincasa hispida</em>) peel, a food waste, as a filler material to produce epoxy (EP) composites. The effect of ash gourd peel particle percentage (ranging from 0 to 25 wt.%) was studied on the developed composites’ mechanical and thermal properties and water absorption behavior. The maximum tensile strength, flexural strength, and shore D hardness were 47.52 MPa, 2409.17 MPa, and 79.6respectively, when the ash gourd peel was 5% by weight in the composite. It was observed that the mechanical characteristics of manufactured bio-composites are negatively affected by the high concentration of ash gourd peel particles in the epoxy matrix. Also, increasing ash gourd peel particle fraction increases the water absorption of composites when immersed in distilled, sea, and tap water. The composite with 5% filler by weight absorbs water at a minimal rate when immersed in seawater. Thermogravimetric analysis was conducted to investigate the newly developed composite’s thermal behavior. In addition, a morphological examination of the fractured surfaces was carried out with assistance from a scanning electron microscope. The work presents ash gourd peel particles as the potential alternative to be used as filler in composites.</div></div>\",\"PeriodicalId\":14236,\"journal\":{\"name\":\"International Journal of Polymer Analysis and Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Analysis and Characterization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000313\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000313","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Mechanical, Thermal, and Water Absorption Behavior of Ash Gourd (Benincasa Hispida) Peel Particles Filled Epoxy Composites
Recently, bio-composites have attracted much attention due to their potential applications in various industries. The most notable benefits are the product’s low cost, biodegradability, lightweight, availability, and ability to solve environmental issues. The present research utilizes ash gourd (Benincasa hispida) peel, a food waste, as a filler material to produce epoxy (EP) composites. The effect of ash gourd peel particle percentage (ranging from 0 to 25 wt.%) was studied on the developed composites’ mechanical and thermal properties and water absorption behavior. The maximum tensile strength, flexural strength, and shore D hardness were 47.52 MPa, 2409.17 MPa, and 79.6respectively, when the ash gourd peel was 5% by weight in the composite. It was observed that the mechanical characteristics of manufactured bio-composites are negatively affected by the high concentration of ash gourd peel particles in the epoxy matrix. Also, increasing ash gourd peel particle fraction increases the water absorption of composites when immersed in distilled, sea, and tap water. The composite with 5% filler by weight absorbs water at a minimal rate when immersed in seawater. Thermogravimetric analysis was conducted to investigate the newly developed composite’s thermal behavior. In addition, a morphological examination of the fractured surfaces was carried out with assistance from a scanning electron microscope. The work presents ash gourd peel particles as the potential alternative to be used as filler in composites.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.