{"title":"Comparative assessment of <i>Brassica cultivars</i> for genotypic variability in phytoremediation of soil exposed to lead (Pb) contamination.","authors":"Janpriya Kaur, Vivek Sharma, Salwinder Singh Dhaliwal, Sanjib Kumar Behera, Vibha Verma, Prabhjot Singh","doi":"10.1080/15226514.2024.2405624","DOIUrl":"https://doi.org/10.1080/15226514.2024.2405624","url":null,"abstract":"<p><p>The soil pollution caused with accretion of pollutant elements like lead (Pb) is the major environmental concern nowadays. Phytoremediation of contaminated soils using <i>Brassica</i> cultivars that act as hyperaccumulator plants for Pb emerges as an important technique for decontamination of Pb spiked soils. Therefore, pot study was carried out to compare the efficiency of three <i>Brassica cultivars</i> and select the most efficient cultivar for phytoremediation of Pb spiked soils. The experimental soil was contaminated with Pb applied @ 0, 125, 250, 500, 750, and 1,000 mg kg<sup>-1</sup> soil. Our outcomes reflected that increased rates of Pb pollution in soil from 125 to 1,000 mg kg<sup>-1</sup> soil resulted in decline of yield but enhanced the Pb acquisition of all <i>Brassica</i> cultivars. Comparison of cultivars indicated the highest biomass production (16.7 g pot<sup>-1</sup>), Pb acquisition (4,011.7 μg pot<sup>-1</sup>), contamination indices <i>i.e.,</i> tolerance index (70.6), and bioaccumulation coefficient (17.03) by <i>Brassica juncea</i> produced thereby proving it as the most efficient cultivar for phytoremediation of Pb spiked soil.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-12"},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blessing Chidiebere Mbaeze, Nwachukwu Romanus Ekere, Chioma Sarah Chukwu, Oga Kingsley Ominyi, Janefrances Ngozi Ihedioha
{"title":"Harnessing <i>Moringa oleifera</i> root powder (MORP) for the sustainable remediation of heavy metal contaminated water.","authors":"Blessing Chidiebere Mbaeze, Nwachukwu Romanus Ekere, Chioma Sarah Chukwu, Oga Kingsley Ominyi, Janefrances Ngozi Ihedioha","doi":"10.1080/15226514.2024.2405627","DOIUrl":"https://doi.org/10.1080/15226514.2024.2405627","url":null,"abstract":"<p><p>Heavy metal environmental pollution is rapidly increasing due to the increase in industrialization and urbanization. Industrial processes, such as paint production, mining, and raw materials producing industries release effluents rich in heavy metals, like Pb<sup>2+</sup>, Cd<sup>2+</sup>, Cu<sup>2+</sup>, and Cr<sup>3+</sup>. These heavy metals are dangerous because they persist in nature, are non-biodegradable and they have high tendency to accumulate in the environment and in living organisms who are exposed to them. This work studied the removal of heavy metals (Cu, Pb, Cr, and Cd) from aqueous solution using <i>Moringa oleifera</i> root powder (MORP) as the adsorbent. The MORP was characterized by SEM, FTIR, BET, and XRD. Batch adsorption experiments carried out investigated the effects of adsorbate concentration, adsorbent dosage, agitation time, pH and temperature on adsorption. The optimum parameters are: contact time (90 min); pH (9); adsorbent dose (0.6); metal ion concentration (30 mg L<sup>-1</sup>) for Cr and 40 mg L<sup>-1</sup> for the rest; and temperature (50 °C) for Cu and Pb, and 70 °C for Cr and Cd. These experimental data were analyzed with 5 isotherm models (Temkin, Flory-Huggins, Langmuir, D-R and Freundlich). The result obtained fitted best to Temkin isotherm in comparison to others. Kinetic studies revealed that the pseudo-second order kinetic model best described the adsorption (with high R<sup>2</sup> values ranging from 0.9810-0.9976) compared to pseudo-first order and intra-particle diffusion kinetics model. Results of the thermodynamic study showed that the sorption process was endothermic for Cu and Pb, but exothermic for Cd and Cr. The adsorbent showed good adsorptive tendencies toward the ions studied, and could be applied on an industrial scale for the remediation of metal contaminated water.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-12"},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acetone <i>O</i>-(2-naphthylsulfonyl) oxime alleviates the toxic effects of cadmium in maize seedlings by increasing the phenolic substance content and antioxidant system activity.","authors":"Fuat Yetişsin, Esin Ahneak","doi":"10.1080/15226514.2024.2406942","DOIUrl":"https://doi.org/10.1080/15226514.2024.2406942","url":null,"abstract":"<p><p>The absorption of cadmium by plants largely depends on cadmium contamination in the soil. The development of phytomining and phytoremediation methods to clean cadmium-contaminated ecosystems is an urgent issue that needs to be solved. Therefore, the role of exogenous O-(2-naphthylsulfonyl)oxime (ANSO) to maize seedlings under cadmium stress was tested. The results showed that when ANSO+cadmium application was compared to cadmium, the cadmium content increased by 7.8 times, while the abscisic acid content decreased. Under cadmium stress, ANSO application did not change the relative water content, but increased the chlorophyll content. While carotenoid content increased with cadmium application, it increased further with ANSO+cadmium application. As a result of the positive effects of ANSO application on the antioxidant system under cadmium stress, hydrogen peroxide content, lipid peroxidation and proline content decreased. ANSO application under cadmium stress increased the phenolic substance content. This study shows that exogenous ANSO makes significant contributions to the protection of maize seedlings despite being under cadmium stress. It also provides important references to the fact that despite stress, the cadmium chelation mechanisms of seedlings continue to work actively to accumulate cadmium in tissues, and it has deep implications for the remediation of cadmium-polluted soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-12"},"PeriodicalIF":3.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leveraging plant-based remediation technologies against chromite mining toxicity.","authors":"Chirasmita Mohanty, Chinnadurai Immanuel Selvaraj","doi":"10.1080/15226514.2024.2407908","DOIUrl":"https://doi.org/10.1080/15226514.2024.2407908","url":null,"abstract":"<p><p>The release of hazardous hexavalent chromium from chromite mining seriously threatens habitats and human health by contaminating water, air, and soil. Vulnerability to hexavalent chromium can result in significant health risks, <i>viz,</i> respiratory issues, gastrointestinal illnesses, skin problems in humans, and a plethora of toxic effects in animals. Moreover, Cr(VI) toxicity can adversely affect plant physiology by inhibiting seed germination, nutrient uptake, cell division, and root development, ultimately impairing growth and vitality. Fortunately, innovative techniques such as phytoremediation and nanotechnology have been developed to address heavy metal contamination, offering a promising solution, mainly through the use of hyperaccumulating plants. Biochar derived from plant waste is widely used and is emerging as a sustainable strategy for remediating Cr(VI) contamination. Biochar is rich in carbon and highly influential in removing Cr(VI) from contaminated soils. This approach addresses immediate challenges while providing a sustainable pathway for environmental rehabilitation in chromium mining. Integrating innovative technologies with nature-based solutions offers a holistic approach to reducing the harmful effects of chromium mining, thus protecting both human well-being and ecosystems. This review highlights the impact of Cr(VI) on different living biotas and further emphasizes the use of plants and plant-based materials for the sustainable remediation of chromite mining regions.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-14"},"PeriodicalIF":3.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of selected tree species as phytoremediation agents in polluted soils.","authors":"B L Olajiire-Ajayi, O O Akintola, E Thomas","doi":"10.1080/15226514.2024.2404169","DOIUrl":"https://doi.org/10.1080/15226514.2024.2404169","url":null,"abstract":"<p><p>The study investigates the ability of selected tree species to absorb heavy metals (Pb, Ni, Zn) from polluted soils. Seedlings of Adansonia digitata (P<sub>1</sub>), Jatropha curcas (P<sub>2</sub>), and Hildegardia barteri (P<sub>3</sub>) were transplanted into polythene pots with soils from a dumpsite (T<sub>1</sub>), highway (T<sub>2</sub>), industrial area (T<sub>3</sub>), and farmland (T<sub>4</sub>), forming a 3x4 factorial experiment replicated five times in a Completely Randomized Block Design. Pre-sowing analysis showed T<sub>1</sub> and T<sub>2</sub> had the highest Pb and Zn concentrations, T<sub>3</sub> had the highest Ni, and T<sub>4</sub> had the lowest heavy metal concentrations. After 12 weeks, heavy metal concentrations decreased in all soils. P<sub>1</sub> concentrated metals in the root, P<sub>2</sub> in the shoot, and P<sub>3</sub> in various plant parts, with significant differences between species. P<sub>2</sub> was identified as an effective phytoextractor for Pb and Zn (TF > 1), and P<sub>3</sub> for Ni. All species showed potential for phytostabilization. The study concludes that these species are viable options for phytoremediation of heavy metals in contaminated soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bibi Saima Zeb, Qaisar Mahmood, Muhammad Irshad, Habiba Zafar, Ru Wang
{"title":"Sustainable treatment of combined industrial wastewater: synergistic phytoremediation with <i>Eichhornia crassipes, Pistia stratiotes,</i> and <i>Arundo donax in</i> biofilm wetlands.","authors":"Bibi Saima Zeb, Qaisar Mahmood, Muhammad Irshad, Habiba Zafar, Ru Wang","doi":"10.1080/15226514.2024.2403037","DOIUrl":"https://doi.org/10.1080/15226514.2024.2403037","url":null,"abstract":"<p><p>This study investigates the treatment of combined wastewater from Hattar Industrial Estate using Biofilm Wetlands (BW) planted with monoculture species: <i>Eichhornia crassipes</i> (EAC), <i>Pistia stratiotes</i> (WL), and <i>Arundo donax</i> (GR). Each species showed distinct capabilities in organic degradation, metal uptake, and pH stabilization. BW2, planted with EAC, achieved the highest total solids (TS) and total suspended solids (TSS) removal efficiencies of 66% and 65%, respectively. GR effectively reduced initial COD concentrations from 232 mg/L to 58.67 mg/L, while EAC and WL reached reductions to 72.78 mg/L and 70.67 mg/L, respectively. Overall, the plant efficiency ranking was EAC > GR > WL. These findings underscore the potential of these plant species in synergistic BW systems, highlighting their role as natural solutions for remediating complex industrial effluents. This research contributes to advancing eco-friendly wastewater treatment approaches, suggesting promising applications for sustainable practices in industrial contexts.RESEARCH HIGHLIGHTSThis research assessed the effectiveness of phytoremediation using <i>Eichhornia crassipes, Pistia stratiotes,</i> and <i>Arundo donax</i> for removing pollutants i.e. heavy metals (Cd, Pb, Ni, K, Ca, Mg, Na, Fe, Hg) nitrates, phosphates and sulfates from combined industrial wastewater of Hattar Industrial Estate Pakistan.It highlighted the potential of selected plant species' as natural treatment systems, providing crucial insights into their efficiency.Findings contribute to understanding nature-based solutions for complex industrial effluents.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-7"},"PeriodicalIF":3.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Growth potential, biochemical properties and nutrient removal efficiency of some freshwater microalgae and their consortia from wastewater.","authors":"Tanushree Paul, Pushpita Nath, Shahnaj Tapadar, Sakiba Sultana, Sanjana Deb Purkayastha, Himangshu Sharma, Jayashree Rout","doi":"10.1080/15226514.2024.2405001","DOIUrl":"10.1080/15226514.2024.2405001","url":null,"abstract":"<p><p>Impact of varying nitrate (NO<sub>3</sub>-N) and phosphate (PO<sub>4</sub>-P) concentrations and sewage water (SW) on the growth, nutrient removal, lipid accumulation, enzymatic antioxidant activity and phytochemical contents of the microalgae <i>Scenedesmus dimorphus, Coelastrella tenuitheca, Chroococcus turgidus</i> and <i>Parachlorella kessleri</i> under monoculture and their consortia have been investigated. High growth rates were observed for all the four algae in both mono and mixed culture conditions at enhanced concentrations of N (1500 mg/L NO<sub>3</sub>-N) and P (40 mg/L PO<sub>4</sub>-P). The species <i>Scenedesmus dimorphus</i> outperformed other microalgae growing in SW in efficiently removing nitrogen. The algal consortia of mixed species was found to be more effective in phosphorus removal. The carbohydrate and protein contents were highest in <i>Parachlorella kessleri,</i> about 37% and 44%, respectively, in SW cultivation. The algal consortia demonstrated highest starch content (4%) in nitrogen deprived growth medium. Highest lipid production (43%) was observed in the SW culture. The species <i>Coelastrella tenuitheca, Chroococcus turgidus</i> and <i>Scenedesmus dimorphus</i> irrespective of the growth media indicated significant accumulation of phenol, flavonoid and tannin. The DPPH, catalase and ascorbic peroxidase assay showed pronounced antioxidant activity. Nutrient (N and P) enrichment exhibited enhanced antioxidant enzymatic activity and accumulation of cell storage products.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-11"},"PeriodicalIF":3.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects and mechanisms of aquatic landscape plants on the removal of veterinary antibiotics from hydroponic solutions.","authors":"Xiao-Ming Lu, Yi-Xi Liu","doi":"10.1080/15226514.2024.2402877","DOIUrl":"https://doi.org/10.1080/15226514.2024.2402877","url":null,"abstract":"<p><p>Four aquatic landscape plants and three veterinary antibiotics were selected to construct a hydroponic test system to analyze the tolerance, removal effect and mechanism of antibiotics. The results indicated that antibiotic concentrations from 0 to 100 μg·L<sup>-1</sup> promoted plant heights and leaf chlorophyll contents, while antibiotics at concentrations > 100 μg·L<sup>-1</sup> had inhibitory effects. The ability of different plants to remove antibiotics was <i>Acorus calamus</i> L. > <i>Ceratophyllum demersum</i> L. > <i>Thalia dealbata</i> Fraser > <i>Nuphar pumila</i> (Timm) DC. The plants with the best removal of norfloxacin, sulfadimethoxine and chlortetracycline were <i>Ceratophyllum demersum</i> L., <i>Acorus calamus</i> L. and <i>Acorus calamus</i> L. after 12 d of hydroponic cultivation using 100 μg·L<sup>-1</sup> antibiotics, with removal rates of 66.6%, 63.0% and 63.2%, respectively. The accumulation of antibiotics in different plant tissues was root > stem > leaf and the accumulation increased with incubation time. The diversity of plant root biofilm microorganisms decreased with increasing treatment concentrations of antibiotics, while the abundance of dominant genera (<i>Aeromonas</i>, <i>Bacillus</i>, <i>Lysinibacillus</i>, <i>Providencia</i>, and <i>Staphylococcus</i>) showed an increasing trend. The findings imply that the antibiotic uptake by plants and the dynamics of the rhizosphere microbial community combine to promote antibiotic removal.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-11"},"PeriodicalIF":3.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeissica Taline Prochnow Raposo, Enilson de Barros Silva, Iracema Raquel Santos Bezerra, Wesley Costa Silva, Flávio Antônio Fernandes Alves, Lauana Lopes Dos Santos, Caíque Menezes de Abreu
{"title":"Fertilized soils enhance the efficiency of phytoremediation by tropical grasses in cadmium-contaminated soils.","authors":"Jeissica Taline Prochnow Raposo, Enilson de Barros Silva, Iracema Raquel Santos Bezerra, Wesley Costa Silva, Flávio Antônio Fernandes Alves, Lauana Lopes Dos Santos, Caíque Menezes de Abreu","doi":"10.1080/15226514.2024.2402875","DOIUrl":"https://doi.org/10.1080/15226514.2024.2402875","url":null,"abstract":"<p><p>The effectiveness of phytoremediation in Cd-contaminated soils is crucial for enhancing nutrient availability and plant tolerance to Cd. We simulated soil contamination with varying textures and fertilization conditions. Two experiments were conducted: one without liming and fertilization and another with soil fertilization for grasses. The soil types used were Oxisol and Entisol, and the grasses tested were <i>Megathyrsus maximus</i> and <i>Urochloa brizantha</i> at three Cd levels: 0 mg kg<sup>-1</sup> (Control), 2 mg kg<sup>-1</sup> (Low), and 12 mg kg<sup>-1</sup> (High). Soil amendments and fertilization did not significantly change Cd availability. Soil chemical attributes were unaffected by Cd contamination but were influenced by fertilization, which kept the pH below optimal levels. Cd availability was higher in more contaminated soils, with Entisol showing greater concentrations than Oxisol. Dry matter production of the grasses decreased with higher contamination, with <i>U. brizantha</i> being more productive than <i>M. maximus</i> in fertilized soils. Cd accumulation was higher in highly contaminated soils, particularly for <i>U. brizantha</i>. The bioconcentration factor was higher in Entisol, while the translocation factor exceeded 1.0 only for <i>M. maximus</i> in low-contamination Oxisol. Fertilization can mitigate Cd contamination effects, with <i>U. brizantha</i> showing greater tolerance and accumulation capacity in fertilized soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Namita Gupta, Vartika Gupta, S K Dwivedi, D K Upreti
{"title":"Understanding physiological, elemental distribution and bioaccumulation responses of crustose and foliose lichens in the vicinity of coal-based thermal power plant, Raebareli, Uttar Pradesh, India.","authors":"Namita Gupta, Vartika Gupta, S K Dwivedi, D K Upreti","doi":"10.1080/15226514.2024.2400320","DOIUrl":"https://doi.org/10.1080/15226514.2024.2400320","url":null,"abstract":"<p><p>Environmental pollution, especially from coal-based thermal power plants, poses significant risks to human respiratory health and the environment. This study evaluates the diversity of lichens in the areas. Physiological and bioaccumulation responses of two crustose lichens (<i>Bacidia incongruens</i> and <i>Rindoina sophodes</i>) and one foliose lichen (<i>Pyxine cocoes</i>) in the vicinity of the Feroz Gandhi Unchahar National Thermal Power Corporation, Raebareli, Uttar Pradesh, India were also assessed. These lichens, exposed to emissions including fly ash, greenhouse gases, metals, and particulate matter were analyzed for metal accumulation and physiological responses. Changes in physiological parameters and metal profiles concerning distance from the coal-based thermal power plant to the outskirts were analyzed for <i>B. incongruens, R. sophodes</i> and <i>P. cocoes</i> by utilizing Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The study identified 18 lichen species from 12 genera and 10 families in the area, with <i>Pyxine sorediata</i> newly recorded in Uttar Pradesh. The dominant species, <i>B. incongruens, P. cocoes,</i> and <i>R. sophodes</i>, preferred substrates like <i>Mangifera indica, Acacia nilotica,</i> and <i>Azadirachta indica</i> bark. Physiological analyses revealed variations in pigment concentrations, with significant differences in chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, and chlorophyll degradation, while protein content remained stable. Metal accumulation studies showed nine metals with distinct patterns, <i>B. incongruens</i> had higher concentrations in the west (52730.61 µg g<sup>-1</sup>) and <i>P. cocoes</i> in the east (23628.32 µg g<sup>-1</sup>). Correlation analyses indicated significant relationships between paired elements, suggesting specific sources of environmental contamination. This research highlights the significance of integrating physiological and environmental factors to understand lichen responses to coal based thermal power plant.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-17"},"PeriodicalIF":3.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}