Fatemeh Sahlabadi, Mohammad Hossein Salmani, Negin Rezaeiarshad, Mohammad Hassan Ehrampoush, Mehdi Mokhtari
{"title":"Isotherm and kinetic studies on adsorption of gasoline and kerosene using jujube and barberry tree stem powder and commercially available activated carbon.","authors":"Fatemeh Sahlabadi, Mohammad Hossein Salmani, Negin Rezaeiarshad, Mohammad Hassan Ehrampoush, Mehdi Mokhtari","doi":"10.1080/15226514.2023.2288895","DOIUrl":"10.1080/15226514.2023.2288895","url":null,"abstract":"<p><p>Herein, the application of granular activated carbon, jujube, and barberry tree stem powder for the removal of gasoline and kerosene from water was investigated. Kerosene removal rates upwards of 68.48, 83.87, and 99.02% were achieved using jujube tree stem powder, barberry tree stem powder, and granular activated carbon, respectively. Besides, gasoline removal rates upwards of 69.35, 55.02, and 95.59% were attained using jujube tree stem powder, barberry tree stem powder, and granular activated carbon, respectively. Isotherm data were further investigated and fitted using Langmuir, Freundlich, and Elovich models. The results indicated that the adsorption onto jujube adsorbent is a multilayer adsorption process over a heterogeneous surface, which is best illustrated by the Temkin (Ave. <i>R</i><sup>2</sup>= 0.95) model. It was found that the Temkin isotherm (Ave. <i>R</i><sup>2</sup>= 0.81) best describes the properties of barberry stem powder in the adsorption of gasoline and kerosene from water. Moreover, the best models to describe the characteristics of granular activated carbon in the adsorption of gasoline and kerosene from water were Freundlich (Ave. <i>R</i><sup>2</sup>= 0.74) and Langmuir (Ave. <i>R</i><sup>2</sup>= 0.73) isotherms, respectively. The adsorption kinetics showed that the pseudo-second-order was appropriate in modeling the adsorption kinetics of gasoline and kerosene to the studied adsorbents (<i>R</i><sup>2</sup>>0.74).</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138477640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmad Hapiz, Ali H Jawad, Zeid A Alothman, Lee D Wilson
{"title":"Mesoporous activated carbon derived from fruit by-product by pyrolysis induced chemical activation: optimization and mechanism for fuchsin basic dye removal.","authors":"Ahmad Hapiz, Ali H Jawad, Zeid A Alothman, Lee D Wilson","doi":"10.1080/15226514.2023.2288904","DOIUrl":"10.1080/15226514.2023.2288904","url":null,"abstract":"<p><p>In this study, pineapple crown (PC) feedstock residues were utilized as a potential precursor toward producing activated carbon (PCAC) <i>via</i> pyrolysis induced with ZnCl<sub>2</sub> activation. The PCAC has a surface area (457.8 m<sup>2</sup>/g) and a mesoporous structure with an average pore diameter of 3.35 nm, according to the Brunauer-Emmett-Teller estimate. The removal of cationic dye (Fuchsin basic; FB) was used for investigating the adsorption parameters of PCAC. The optimization of significant adsorption variables (A: PCAC dose (0.02-0.1 g/100 mL); B: pH (4-10); C: time (10-90); and D: initial FB concentration (10-50 mg/L) was conducted using the Box-Behnken design (BBD). The pseudo-second-order (PSO) model characterized the dye adsorption kinetic profile, whereas the Freundlich model reflected the equilibrium adsorption profile. The maximum adsorption capacity (<i>q</i><sub>max</sub>) of PCAC for FB dye was determined to be 171.5 mg/g. Numerous factors contribute to the FB dye adsorption mechanism onto the surface of PCAC, which include electrostatic attraction, H-bonding, pore diffusion, and π-π stacking. This study illustrates the utilization of PC biomass feedstock for the fabrication of PCAC and its successful application in wastewater remediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138803082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed A Sorour, R. Badr, Nermen Mahmoud, Amani Abdel-Latif
{"title":"Cadmium and zinc accumulation and tolerance in two Egyptian cultivars (S53 and V120) of Helianthus annuus L. as potential phytoremediator.","authors":"Ahmed A Sorour, R. Badr, Nermen Mahmoud, Amani Abdel-Latif","doi":"10.1080/15226514.2024.2343842","DOIUrl":"https://doi.org/10.1080/15226514.2024.2343842","url":null,"abstract":"One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140678539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. A. Abbasi, R. Rahi, Tabassum- Abbasi, P. Patnaik, Tasneem Abbasi
{"title":"A pilot-scale assessment of five common weeds in the sustainable treatment of sewage utilizing SHEFROL®, with prospects of a closed-loop biorefinery.","authors":"S. A. Abbasi, R. Rahi, Tabassum- Abbasi, P. Patnaik, Tasneem Abbasi","doi":"10.1080/15226514.2024.2340126","DOIUrl":"https://doi.org/10.1080/15226514.2024.2340126","url":null,"abstract":"Relative efficacy of five common weeds-of the kind that are either rooted in soil or which freely float over water-was assessed in rapid, effective and sustainable treatment of sewage at pilot plant scale in the recently developed and patented SHEFROL® bioreactors. The plants were utilized in a unit of capacity 12,000 liters/day (LPD) which, after two years of use, was enlarged to handle 40,000 LPD of sewage. It was then further expanded after an year to treat 57,000 LPD. All the five weeds, of which none has previously been tested in a pilot-scale SHEFROL, were able to foster highly efficient primary treatment (in terms of suspended and total solids) and secondary treatment (in terms of BOD and COD) to levels exceeding 85% in most cases. Additionally, the weeds also helped in achieving significant tertiary treatment. At different hydraulic retention times, and at steady state, the five weeds achieved treatment of BOD, COD, suspended solids, nitrogen, phosphorous, copper, nickel, zinc, and manganese in the ranges, 80-95, 79-91, 82-95, 61-71, 51-73, 37-43, 30-38, 39-47, and 27-35%, respectively. It all occurred in a single process step and without the use of any machine or chemical. This made the system not only simple and inexpensive to install but also to maintain. Over continuous long-term operation for four years, the system was seen to be very robust as it was able to handle wide variations in the volumes and characteristics of sewage, as well as absorb shock loads without compromising the reactor performance. The sustainability of the system can be further enhanced by upgrading it to a circular biorefinery. Energy sources in the form of volatile fatty acids (VFAs) can be extracted from the weeds removed from SHEFROL and then the weeds can be converted into organic fertilizer using high-rate vermireactors recently developed by the authors.","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140679327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Al-Tabbal, Mohammad Al-Harahsheh, Jehad Al-Zou’by
{"title":"Silica nanoparticles as a waste product to alleviate the harmful effects of water stress in wheat.","authors":"J. Al-Tabbal, Mohammad Al-Harahsheh, Jehad Al-Zou’by","doi":"10.1080/15226514.2024.2342631","DOIUrl":"https://doi.org/10.1080/15226514.2024.2342631","url":null,"abstract":"Drought is a threat to food security and agricultural sustainability in arid and semi-arid countries. Using wasted silica nanoparticles could minimize water scarcity. A controlled study investigated wheat plant physiological and morphological growth under tap-water irrigation (80-100, 60-80, and 40-60% field capacity). The benefits of S1: 0%, S2: 5%, and S3: 10% nanoparticle silica soil additions were studied. Our research reveals that water stress damages the physiological and functional growth of wheat plants. Plant height decreased by 8.9%, grain yield by 5.4%, and biological yield by 19.2%. These effects were observed when plants were irrigated to 40-60% field capacity vs. control. In plants under substantial water stress (40-60% of field capacity), chlorophyll a (8.04 mg g-1), b (1.5 mg g-1), total chlorophyll (9.55 mg g-1), carotenoids (2.44 mg g-1), and relative water content (54%), Electrolyte leakage (59%), total soluble sugar (1.79 mg g-1 fw), and proline (80.3 mol g-1) were highest. Plants cultivated with silica nanoparticles exhibit better morphological and physiological growth than controls. The largest effect came from maximum silica nanoparticle loading. Silica nanoparticles may increase drought-stressed plant growth and production.","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140678712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facile green synthesis of a novel NiO and its catalytic effect on methylene blue photocatalytic reduction and sodium borohydride hydrolysis.","authors":"O. Baytar","doi":"10.1080/15226514.2024.2338470","DOIUrl":"https://doi.org/10.1080/15226514.2024.2338470","url":null,"abstract":"NiO nanoparticles were synthesized from pine cone extract by green synthesis method, which is a simple, cost-effective, environmentally friendly and sustainable method. The particle size of NiO nanoparticles was determined to be in the range of 10-25 nm by X-diffraction differential and transmission electron microscope analysis, and the bandgap energy of NiO nanoparticles was determined to be 2.66 eV. The catalytic effect of NiO nanoparticles in both microwave-assisted sodium borohydride hydrolysis and photocatalytic reduction of methylene blue was examined and it was determined that they had a high catalytic effect in both applications. It was determined that the hydrogen production rate in sodium borohydride hydrolysis was 1135 mL/g/min. The activation energy of sodium borohydride hydrolysis is 29.69 kJ/mol and 29.59 kJ/mol for the nth-order and Langmuir Hinshelwood kinetic models, respectively. In the photocatalytic reduction of methylene blue with NaBH4, it was determined that the reduction did not occur in the absence of a catalyst, but in the presence of the catalyst, the reduction occurred 98% in 3 min. It was determined that NiO nanoparticles were used five times in the photocatalytic reduction of methylene blue and the reduction efficiency for the fifth time was 93%. It was determined that the photocatalytic reduction of methylene blue was pseudo-first order and the rate constant was 1.63 s-1. It was determined that NiO nanoparticles synthesized by the environmentally friendly green synthesis method can be used as catalysts for two different applications.","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. T. Umeh, J. Nduka, Refilwe Mogale, K. Akpomie, N. H. Okoye
{"title":"Acid-activated corn silk as a promising phytosorbent for uptake of Malachite green and Cd (II) ion from simulated wastewater: equilibrium, kinetic and thermodynamic studies.","authors":"C. T. Umeh, J. Nduka, Refilwe Mogale, K. Akpomie, N. H. Okoye","doi":"10.1080/15226514.2024.2339478","DOIUrl":"https://doi.org/10.1080/15226514.2024.2339478","url":null,"abstract":"Malachite green (MG) dye and cadmium metal ion are toxic pollutants that should be removed from aqueous environment. The recent study aimed to examine the adsorption behavior of MG dye and Cd (II) from wastewater onto low-cost adsorbent prepared by activating corn silk with nitric acid (ACS) and characterized by SEM, FTIR, XRD, BET and TGA. The optimum MG and Cd (II) adsorption was observed at pH 7 and pH 9 and maximum uptake of both pollutants was at 0.5 g dosage, 60 mins contact time and 20 mg/L initial concentration. The retention of dye and metal ion by the studied adsorbent was best fit to Langmuir isotherm and Pseudo-second order kinetics. The maximum monolayer coverage capacity of ACS for MG dye and Cd (II) ion was 18.38 mg/g and 25.53 mg/g, respectively. Thermodynamic studies predicted a spontaneous reaction with exothermic process for MG dye whereas an endothermic and spontaneous process was confirmed for Cd ion based on estimated parameters. The adsorption mechanism of MG dye and Cd (II) uptake was by combination of electrostatic interaction, pore diffusion, ion exchange, pie-pie attraction, hydrogen bonding, and complexation. The adsorbed pollutants were effectively desorbed with significant regeneration efficiency after successive five cycles that proved the potential of low-cost biosorbent for selective sequestration of cationic dye and divalent metal ion from effluents.","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140697136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction.","authors":"","doi":"10.1080/15226514.2024.2342686","DOIUrl":"https://doi.org/10.1080/15226514.2024.2342686","url":null,"abstract":"","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140702950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of sulfur nanoparticles on rhizosphere microbial community changes in oilseed rape plantation soil under mercury stress.","authors":"Qiurong Zhuang, Yongxia Zhang, Qingquan Liu, Yuming Sun, Sudhir Sharma, Shijie Tang, O. Dhankher, Haiyan Yuan","doi":"10.1080/15226514.2024.2335207","DOIUrl":"https://doi.org/10.1080/15226514.2024.2335207","url":null,"abstract":"In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140719154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Imane Zoufri, Mohammed Merzouki, Malika Ammari, Younesse El-Byari, Mohamed Chedadi, Amina Bari, F. Jawhari
{"title":"Performance of vertical flow constructed wetland for the treatment of effluent from a brassware industry in city of Fez, Morocco: a laboratory scale study.","authors":"Imane Zoufri, Mohammed Merzouki, Malika Ammari, Younesse El-Byari, Mohamed Chedadi, Amina Bari, F. Jawhari","doi":"10.1080/15226514.2024.2338137","DOIUrl":"https://doi.org/10.1080/15226514.2024.2338137","url":null,"abstract":"Brassware industry constitutes the second most polluting industrial sector in Fez city, Morocco, owing to its high heavy metal load. The aim of this study is to examine and evaluate the performance of vertical flow constructed wetlands in treating brassware effluents using various plant species. Ten treatment systems were planted with four types of plants: Chrysopogon zizanioides, Typha latifolia, Phragmites australis, and Vitex agnus-castus, while another system remained unplanted. These systems underwent evaluation by measuring various parameters, including pH, electrical conductivity, suspended solids, chemical oxygen demand, biological oxygen demand, sulfates, orthophosphates, total Kjeldhal nitrogen, ammonium, nitrates, nitrites, and heavy metals such as silver, copper, and nickel, using standard methods over of ten weeks. The results obtained demonstrate effectiveness of these systems. When planted with Ch. zizanioides, the systems achieved elimination rates of 83.64%, 98.55%, 91.48%, 86.82%, 80.31%, 96.54%, 98%, and 98.82% for suspended solids, ammonium, nitrites, BOD5, sulfates, orthophosphates, silver, and nickel, respectively. System with V. agnus-castus showed significant reductions in nitrate and copper, with rates of 84.48% and 99.10%, respectively. Considerable decrease in pH and electrical conductivity values was observed in all systems, with a notable difference between planted and control systems regarding effectiveness of treatment for other parameters.","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140721233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}