International Journal of Phytoremediation最新文献

筛选
英文 中文
Enhanced pollution removal from canal water by coupling aeration to floating treatment wetlands. 通过将曝气与浮动处理湿地相结合,增强运河水的污染清除能力。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2024-09-11 DOI: 10.1080/15226514.2024.2401957
Pham-Yen-Nhi Tran, Thi-Viet-Huong Dao, Thi-Kim-Quyen Vo, Tran-Anh-Chi Nguyen, Thi-Mai-Xuan Nguyen, Cong-Sac Tran, Thi-Yen-Phuong Nguyen, Linh-Thy Le, Van-Tung Tra, Nhu-Nguyet Phan, Piet N L Lens, Xuan-Thanh Bui
{"title":"Enhanced pollution removal from canal water by coupling aeration to floating treatment wetlands.","authors":"Pham-Yen-Nhi Tran, Thi-Viet-Huong Dao, Thi-Kim-Quyen Vo, Tran-Anh-Chi Nguyen, Thi-Mai-Xuan Nguyen, Cong-Sac Tran, Thi-Yen-Phuong Nguyen, Linh-Thy Le, Van-Tung Tra, Nhu-Nguyet Phan, Piet N L Lens, Xuan-Thanh Bui","doi":"10.1080/15226514.2024.2401957","DOIUrl":"10.1080/15226514.2024.2401957","url":null,"abstract":"<p><p>Floating treatment wetlands (FTWs) are natural solutions for purifying polluted water, providing a green surface area and improving city landscape. This study investigated if the efficiency of FTWs can be improved by aeration for treating contaminated canal water. The three used plant species were <i>Canna generalis</i>, <i>Phragmites australis</i>, and <i>Cyperus alternifolius</i>. The experiment was carried out in three FTWs with aeration and three without aeration to compare the removal for COD, NH<sub>4</sub><sup>+</sup>-N, <i>E. coli</i>, PO<sub>4</sub><sup>3-</sup>-P, and Fe. In the aerated FTWs, air blowers were installed to run at two different air flow rates of 2.5 L min<sup>-1</sup> (Batch 1) and 1.0 L min<sup>-1</sup> (Batch 2). Aeration increased the dissolved oxygen concentrations in each tank, which came over 6.5 mg L<sup>-1</sup> in both batches. This study sheds light on the positive impact of aeration has on COD and NH<sub>4</sub><sup>+</sup>-N removal: these are nearly three-fold higher compared to non-aeration conditions and reached approximately 99% (1.7-log reduction) for <i>E. coli</i> removal. Additionally, the plant growth rate in the aerated FTWs was higher than in the non-aerated ones. The average shoot growth rate of <i>Phragmites australis</i> was 0.76 cm d<sup>-1</sup> for the aerated FTW which was two-fold higher compared to the non-aerated one.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"84-95"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable treatment of combined industrial wastewater: synergistic phytoremediation with Eichhornia crassipes, Pistia stratiotes, and Arundo donax in biofilm wetlands. 合并工业废水的可持续处理:在生物膜湿地中使用 Eichhornia crassipes、Pistia stratiotes 和 Arundo donax 进行协同植物修复。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2024-09-20 DOI: 10.1080/15226514.2024.2403037
Bibi Saima Zeb, Qaisar Mahmood, Muhammad Irshad, Habiba Zafar, Ru Wang
{"title":"Sustainable treatment of combined industrial wastewater: synergistic phytoremediation with <i>Eichhornia crassipes, Pistia stratiotes,</i> and <i>Arundo donax in</i> biofilm wetlands.","authors":"Bibi Saima Zeb, Qaisar Mahmood, Muhammad Irshad, Habiba Zafar, Ru Wang","doi":"10.1080/15226514.2024.2403037","DOIUrl":"10.1080/15226514.2024.2403037","url":null,"abstract":"<p><p>This study investigates the treatment of combined wastewater from Hattar Industrial Estate using Biofilm Wetlands (BW) planted with monoculture species: <i>Eichhornia crassipes</i> (EAC), <i>Pistia stratiotes</i> (WL), and <i>Arundo donax</i> (GR). Each species showed distinct capabilities in organic degradation, metal uptake, and pH stabilization. BW2, planted with EAC, achieved the highest total solids (TS) and total suspended solids (TSS) removal efficiencies of 66% and 65%, respectively. GR effectively reduced initial COD concentrations from 232 mg/L to 58.67 mg/L, while EAC and WL reached reductions to 72.78 mg/L and 70.67 mg/L, respectively. Overall, the plant efficiency ranking was EAC > GR > WL. These findings underscore the potential of these plant species in synergistic BW systems, highlighting their role as natural solutions for remediating complex industrial effluents. This research contributes to advancing eco-friendly wastewater treatment approaches, suggesting promising applications for sustainable practices in industrial contexts. RESEARCH HIGHLIGHTSThis research assessed the effectiveness of phytoremediation using <i>Eichhornia crassipes, Pistia stratiotes,</i> and <i>Arundo donax</i> for removing pollutants i.e. heavy metals (Cd, Pb, Ni, K, Ca, Mg, Na, Fe, Hg) nitrates, phosphates and sulfates from combined industrial wastewater of Hattar Industrial Estate Pakistan.It highlighted the potential of selected plant species' as natural treatment systems, providing crucial insights into their efficiency.Findings contribute to understanding nature-based solutions for complex industrial effluents.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"128-134"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cesium accumulation and plant growth promotion characteristics of Paecilomyces lilacinus A10 isolated from Brassica juncea L. rhizosphere soil. 芥菜根际土壤中淡紫拟青霉A10的铯积累及促进植株生长特性
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2024-09-03 DOI: 10.1080/15226514.2024.2399771
Shan Yuan, Xi Chen, Na Han, Ming Sun, Chao-Hui Yang, Ming-Xuan Wang, Qun Li, Wen-Ping Du, Guo Wu
{"title":"Cesium accumulation and plant growth promotion characteristics of <i>Paecilomyces lilacinus</i> A10 isolated from <i>Brassica juncea</i> L. rhizosphere soil.","authors":"Shan Yuan, Xi Chen, Na Han, Ming Sun, Chao-Hui Yang, Ming-Xuan Wang, Qun Li, Wen-Ping Du, Guo Wu","doi":"10.1080/15226514.2024.2399771","DOIUrl":"https://doi.org/10.1080/15226514.2024.2399771","url":null,"abstract":"<p><p>The combined microbial-plant remediation has increasingly been used to remediate heavy metal-contaminated soil. Some microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In the present study, a strong cesium (Cs)-tolerant fungal strain <i>Paecilomyces lilacinus</i> was identified from soil microorganisms contaminated with Cs, and the enrichment conditions for Cs were optimized. Furthermore, the effects of the A10 fermentation solution on the growth of Indian mustard (<i>Brassica juncea</i> L.) seedlings were investigated. The results indicated that the optimal combination of factors consisted of a culture temperature of 28 °C, pH7.0, initial concentration of Cs at 5.91 g·L<sup>-1</sup>. The maximum enrichment of Cs in the A10 was up to 75.36 mg·g<sup>-1</sup> DW. In addition, the enrichment of Cs in Indian mustard was significantly enhanced by the application of the A10 fermentation solution, and the growth of Indian mustard was promoted under Cs stress. The present study has expanded the repertoire of microbial resources available for facilitating the Cs contaminated soil, thereby enhancing its applicability in the phytoremediation strategies.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":"27 1","pages":"46-56"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects and mechanisms of aquatic landscape plants on the removal of veterinary antibiotics from hydroponic solutions. 水生景观植物对去除水培溶液中兽用抗生素的影响和机制。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2024-09-16 DOI: 10.1080/15226514.2024.2402877
Xiao-Ming Lu, Yi-Xi Liu
{"title":"Effects and mechanisms of aquatic landscape plants on the removal of veterinary antibiotics from hydroponic solutions.","authors":"Xiao-Ming Lu, Yi-Xi Liu","doi":"10.1080/15226514.2024.2402877","DOIUrl":"10.1080/15226514.2024.2402877","url":null,"abstract":"<p><p>Four aquatic landscape plants and three veterinary antibiotics were selected to construct a hydroponic test system to analyze the tolerance, removal effect and mechanism of antibiotics. The results indicated that antibiotic concentrations from 0 to 100 μg·L<sup>-1</sup> promoted plant heights and leaf chlorophyll contents, while antibiotics at concentrations > 100 μg·L<sup>-1</sup> had inhibitory effects. The ability of different plants to remove antibiotics was <i>Acorus calamus</i> L. > <i>Ceratophyllum demersum</i> L. > <i>Thalia dealbata</i> Fraser > <i>Nuphar pumila</i> (Timm) DC. The plants with the best removal of norfloxacin, sulfadimethoxine and chlortetracycline were <i>Ceratophyllum demersum</i> L., <i>Acorus calamus</i> L. and <i>Acorus calamus</i> L. after 12 d of hydroponic cultivation using 100 μg·L<sup>-1</sup> antibiotics, with removal rates of 66.6%, 63.0% and 63.2%, respectively. The accumulation of antibiotics in different plant tissues was root > stem > leaf and the accumulation increased with incubation time. The diversity of plant root biofilm microorganisms decreased with increasing treatment concentrations of antibiotics, while the abundance of dominant genera (<i>Aeromonas</i>, <i>Bacillus</i>, <i>Lysinibacillus</i>, <i>Providencia</i>, and <i>Staphylococcus</i>) showed an increasing trend. The findings imply that the antibiotic uptake by plants and the dynamics of the rhizosphere microbial community combine to promote antibiotic removal.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"117-127"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aquatic plants mitigate pollution by enhancing the degradation of atrazine and diuron present in agricultural runoff. 水生植物通过增强农业径流中阿特拉津和迪乌隆的降解来减轻污染。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2024-12-26 DOI: 10.1080/15226514.2024.2442639
Xi Ling, Yunv Dai, Yiping Tai, Congcong Jin, Qiwen Li, Xiaomeng Zhang, Yang Yang
{"title":"Aquatic plants mitigate pollution by enhancing the degradation of atrazine and diuron present in agricultural runoff.","authors":"Xi Ling, Yunv Dai, Yiping Tai, Congcong Jin, Qiwen Li, Xiaomeng Zhang, Yang Yang","doi":"10.1080/15226514.2024.2442639","DOIUrl":"https://doi.org/10.1080/15226514.2024.2442639","url":null,"abstract":"<p><p>Vegetated ditches have been demonstrated to be an effective method for pollutant remediation. This study assesses the removal potential and pathways for herbicide runoff pollution utilizing <i>Canna indica</i>, <i>Thalia dealbata</i>, <i>Typha latifolia</i>, and <i>Juncus effuses</i> ditches. Resultes show these vegetated ditches significantly outperform unvegetated ones in removing atrazine and diuron during runoff events (<i>p</i> < 0.05). The removal rates of atrazine and diuron varied among the four aquatic macrophytes, with <i>C. indica</i> and <i>T. latifolia</i> exhibiting the highest efficiencies, achieving 43.02-72.61% and 56.42-53.11% removal, respectively, under varying runoff pollution. The half-lives of herbicides were significantly reduced from 231.01 to 693.15 h in unvegetated ditches to 99.02-230.05 h in vegetated ones. Furthermore, the release rates of herbicides were significantly reduced from 48.95 to 55.79% in unvegetated ditches to 34.10-42.32% in vegetated ones, particularly during high-dose rainfall events (<i>p</i> < 0.05). Mass balance analysis indicated that biodegradation was the primary removal pathway for herbicides (atrazine 36.20%; diuron 45.76%), followed by sorption (atrazine 6.00%; diuron 12.19%) in vegetated ditches. Plants boosted biodegradation, by 0.5 times for diuron and 1 time for atrazine. The study confirms that vegetated ditches effectively reduce herbicide runoff pollution.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signal transducer of IAA related gene expression induces transporters of hyperaccumulator Arabis alpina for Pb accumulation. IAA相关基因表达信号换能器诱导高富集植物阿拉伯豆转运体积累铅。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2024-12-25 DOI: 10.1080/15226514.2024.2443575
Zuran Li, Yumeng Liao, Mei Liu, Xinran Liang, Li Qin, Jixiu Wang, Yanqun Zu
{"title":"Signal transducer of IAA related gene expression induces transporters of hyperaccumulator <i>Arabis alpina</i> for Pb accumulation.","authors":"Zuran Li, Yumeng Liao, Mei Liu, Xinran Liang, Li Qin, Jixiu Wang, Yanqun Zu","doi":"10.1080/15226514.2024.2443575","DOIUrl":"https://doi.org/10.1080/15226514.2024.2443575","url":null,"abstract":"<p><p>Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator <i>Arabis alpina</i>, a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of <i>A. alpina</i>, as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA). The results showed that the soluble components (vacuoles) Pb contents under 300 mg kg<sup>-1</sup> Pb<sup>2+</sup> treatment in shoots and roots increased by 238.8% and 896.3%, respectively, compared to 100 mg kg<sup>-1</sup> Pb<sup>2+</sup> treatment. The content of endogenous hormones in leaves and roots increased under increasing Pb-treatment concentrations. Compared with the control (0 mg kg<sup>-1</sup> Pb<sup>2+</sup> treatment), the content of auxin in roots and leaves under the 100 mg kg<sup>-1</sup> Pb treatment increased by 176.2% and 585.3%, respectively. The auxin content in xylem saps under the 100 and 300 mg kg<sup>-1</sup> Pb treatments increased by 283.1% and 100.3%, respectively. The gene expression related to auxin transport was up-regulated. The expression of three genes related to the auxin-repressed 12.5 kDa protein and the auxin-responsive GH3 (Gretchen Hagen 3) family were down-regulated. Under foliar spraying of IAA, the Pb content in leaves increased by 29.81%, and the Pb content in the symplast sap was higher than that without IAA spraying treatment. The concentrations of CAX and HMA in the roots of <i>A. alpina</i> increased by 9.6% and 8.8%, respectively, with foliar spraying treatment with IAA, while the ABC concentration decreased by 21.9%. In general, the transport and accumulation of Pb is related to the IAA content and the gene expression of <i>AaGDCST</i>, a signal transducer for inducing increased concentrations of the transporter CAX and HMA in the roots of <i>A. alpina</i>. Pb transport <i>via</i> the symplast pathway under IAA application. Regarding the Pb hyperaccumulation of <i>A. alpina</i>, gene <i>AaGDCST</i> has the potential to be utilized as a candidate gene.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flowing-water remediation simulation experiments of lead-contaminated soil using UCB technology. UCB技术对铅污染土壤流水修复模拟实验。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2024-12-22 DOI: 10.1080/15226514.2024.2443071
Bing Bai, Jing Chen, Bin Zhang
{"title":"Flowing-water remediation simulation experiments of lead-contaminated soil using UCB technology.","authors":"Bing Bai, Jing Chen, Bin Zhang","doi":"10.1080/15226514.2024.2443071","DOIUrl":"https://doi.org/10.1080/15226514.2024.2443071","url":null,"abstract":"<p><p>The flowing-water remediation of contaminated soil was investigated. Urease combined with biochar (UCB) technology was used to handle the Pb<sup>2+</sup>-contaminated sand column. The results showed that with the continuous increase of pore volume, the concentration of Pb<sup>2+</sup> in the leachate undergoes three stages: slow growth, rapid growth, and steady state. With increasing seepage velocity, the concentration of Pb<sup>2+</sup> in leachate increased slightly. The residual amount of each section of the sand column gradually decreased with increasing migration distance. The comparative results indicated that the UCB technology had a good solidification effect on Pb<sup>2+</sup>. This was due to urease-induced CaCO<sub>3</sub> precipitation, cementation, and adsorption of Pb<sup>2+</sup>. Biochar provided more nucleation sites for urease, and some Pb<sup>2+</sup> was adsorbed on its surface or diffused into the pores of biochar, or ions exchanged with functional groups on the surface of biochar, which effectively stabilized the free Pb<sup>2+</sup>.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidimensional role of selenium nanoparticles to promote growth and resilience dynamics of Phaseolus vulgaris against sodium fluoride stress. 硒纳米粒子在促进矮牵牛的生长和抗氟化钠胁迫的恢复力方面的多维作用
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2024-12-16 DOI: 10.1080/15226514.2024.2440110
Shakil Ahmed, Mehtab Qasim, Rehana Sardar, Nasim Ahmad Yasin, Ismat Umar
{"title":"Multidimensional role of selenium nanoparticles to promote growth and resilience dynamics of <i>Phaseolus vulgaris</i> against sodium fluoride stress.","authors":"Shakil Ahmed, Mehtab Qasim, Rehana Sardar, Nasim Ahmad Yasin, Ismat Umar","doi":"10.1080/15226514.2024.2440110","DOIUrl":"https://doi.org/10.1080/15226514.2024.2440110","url":null,"abstract":"<p><p>High fluoride (F) concentrations negatively affect the seed germination, plant growth, development, and yield of crops. <i>Phaseolus vulgaris</i> L. is an F-sensitive crop frequently grown on marginal lands affected by F salts. Selenium (Se) is a vital elicitor of the antioxidative enzymes involved in scavenging free radicals to alleviate abiotic stress. Recent studies have demonstrated that engineered nanoparticles (NPs) have the potential to induce tolerance to abiotic stress in plants. Phytosynthesis of NPs is a novel and sustainable approach to mitigate abiotic stresses. The present study was intended to assess the role of green synthesized Se-nanoparticles (Se-NPs) in improving the physiochemical attributes, growth, and F stress tolerance of <i>P. vulgaris</i> growing in 200 ppm sodium fluoride (NaF) stress. NaF toxicity reduced Chl <i>a</i>, Chl <i>b</i>, and carotenoid content by 88.8%, 95.5%, and 96% compared to control with maximum improvement obtained through phyto-nano seed priming and foliar spray of 70 ppm Se-NPs. The joint treatment of NPs application through seed priming and foliar spray improved stomatal conductance (14.2%) and transpiration rate (11.7%) in plants subjected to NaF stress. The protein content (91.02%) and DPPH activity (33.72%) decreased under NaF stress, which was improved by phyto-nano seed priming and foliar spray (14.10%). Furthermore, the integrated application of Se-NPs seed priming and foliar spray increased nutritional content (P, K, Ca, Mg, and Zn), proline, ascorbic acid, and phenol yet reduced the level of NaF in plants. Se-NPs at 70 ppm were found to be more effective than 60 ppm in all modes of applications. Our results reveal a perception that Se-NPs increase <i>P. vulgaris</i> growth in NaF stress conditions, perhaps through a multipronged approach: improving photosynthetic content, nutrient uptake, and yield of <i>P. vulgaris</i>. Consequently, the findings of this study may be used for breeding and screening F-tolerant cultivars.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-18"},"PeriodicalIF":3.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the optimal ratio of improved electrolytic manganese residue substrate about Pennisetum sinese Roxb growth effects. 关于改良电解锰渣基质对 Pennisetum sinese Roxb 生长影响的最佳配比研究
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2024-11-01 Epub Date: 2024-07-24 DOI: 10.1080/15226514.2024.2379610
Jian Yang, Zuyong Chen, Jie Dai, Fang Liu, Jian Zhu
{"title":"Research on the optimal ratio of improved electrolytic manganese residue substrate about <i>Pennisetum sinese Roxb</i> growth effects.","authors":"Jian Yang, Zuyong Chen, Jie Dai, Fang Liu, Jian Zhu","doi":"10.1080/15226514.2024.2379610","DOIUrl":"10.1080/15226514.2024.2379610","url":null,"abstract":"<p><p>Electrolytic manganese slag (EMR) is a solid waste generated in the manganese hydrometallurgy process. It not only takes up significant land space but also contains Mn<sup>2+</sup>, which can lead to environmental contamination. There is a need for research on the treatment and utilization of EMR. Improved EMR substrate for <i>Pennisetum sinese Roxb</i> growth was determined in pot planting experiments. The study tested the effects of leaching solution, microorganisms, leaf cell structures, and growth data. Results indicated a substrate of 45% EMR, 40% phosphogypsum, 5% <i>Hericium erinaceus</i> fungi residue, 5% quicklime, and 5% dolomite sand significantly increased the available phosphorus content (135.54 ± 2.88 μg·g<sup>-1</sup>) by 17.95 times, compared to pure soil, and enhanced the relative abundance of dominant bacteria. After 240 days, the plant height (147.00 ± 0.52 cm), number of tillers (6), and aerial dry weight (144.00 ± 15.99g) of <i>Pennisetum sinese Roxb</i> increased by 5.81%, 200%, and 32.58%, respectively. Analyses of leaves and leaching solution revealed that the highest leaf Mn content (46.84 ± 2.91 μg·g<sup>-1</sup>) being 3.38 times higher than in pure soil, and the leaching solution Mn content (0.66 ± 0.13 μg·g<sup>-1</sup>) was lowest. Our study suggested <i>P. sinese Roxb</i> grown in an improved EMR substrate could be a feasible option for solidification treatment and resource utilization of EMR.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2206-2215"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pontederia crassipes utilization for dual phytoremediation and adsorption in greywater treatment: a techno-economic and sustainable approach. 在中水处理中利用 Pontederia crassipes 进行双重植物修复和吸附:一种技术经济和可持续的方法。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2024-11-01 Epub Date: 2024-07-05 DOI: 10.1080/15226514.2024.2374887
Morish Azabo, Amal Abdelhaleem, Manabu Fujii, Mahmoud Nasr
{"title":"<i>Pontederia crassipes</i> utilization for dual phytoremediation and adsorption in greywater treatment: a techno-economic and sustainable approach.","authors":"Morish Azabo, Amal Abdelhaleem, Manabu Fujii, Mahmoud Nasr","doi":"10.1080/15226514.2024.2374887","DOIUrl":"10.1080/15226514.2024.2374887","url":null,"abstract":"<p><p>While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. <i>P. crassipes</i> was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH<sub>4</sub>-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH<sub>4</sub><sup>+</sup>-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"2113-2126"},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信