International Journal of Phytoremediation最新文献

筛选
英文 中文
Understanding physiological, elemental distribution and bioaccumulation responses of crustose and foliose lichens in the vicinity of coal-based thermal power plant, Raebareli, Uttar Pradesh, India. 了解印度北方邦 Raebareli 以煤为燃料的热电厂附近甲壳和叶状地衣的生理、元素分布和生物累积反应。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2024-09-12 DOI: 10.1080/15226514.2024.2400320
Namita Gupta, Vartika Gupta, S K Dwivedi, D K Upreti
{"title":"Understanding physiological, elemental distribution and bioaccumulation responses of crustose and foliose lichens in the vicinity of coal-based thermal power plant, Raebareli, Uttar Pradesh, India.","authors":"Namita Gupta, Vartika Gupta, S K Dwivedi, D K Upreti","doi":"10.1080/15226514.2024.2400320","DOIUrl":"10.1080/15226514.2024.2400320","url":null,"abstract":"<p><p>Environmental pollution, especially from coal-based thermal power plants, poses significant risks to human respiratory health and the environment. This study evaluates the diversity of lichens in the areas. Physiological and bioaccumulation responses of two crustose lichens (<i>Bacidia incongruens</i> and <i>Rindoina sophodes</i>) and one foliose lichen (<i>Pyxine cocoes</i>) in the vicinity of the Feroz Gandhi Unchahar National Thermal Power Corporation, Raebareli, Uttar Pradesh, India were also assessed. These lichens, exposed to emissions including fly ash, greenhouse gases, metals, and particulate matter were analyzed for metal accumulation and physiological responses. Changes in physiological parameters and metal profiles concerning distance from the coal-based thermal power plant to the outskirts were analyzed for <i>B. incongruens, R. sophodes</i> and <i>P. cocoes</i> by utilizing Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The study identified 18 lichen species from 12 genera and 10 families in the area, with <i>Pyxine sorediata</i> newly recorded in Uttar Pradesh. The dominant species, <i>B. incongruens, P. cocoes,</i> and <i>R. sophodes</i>, preferred substrates like <i>Mangifera indica, Acacia nilotica,</i> and <i>Azadirachta indica</i> bark. Physiological analyses revealed variations in pigment concentrations, with significant differences in chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, and chlorophyll degradation, while protein content remained stable. Metal accumulation studies showed nine metals with distinct patterns, <i>B. incongruens</i> had higher concentrations in the west (52730.61 µg g<sup>-1</sup>) and <i>P. cocoes</i> in the east (23628.32 µg g<sup>-1</sup>). Correlation analyses indicated significant relationships between paired elements, suggesting specific sources of environmental contamination. This research highlights the significance of integrating physiological and environmental factors to understand lichen responses to coal based thermal power plant.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"57-73"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium-magnesium synergy in reducing cadmium bioavailability and uptake in rice plants. 钙镁协同作用降低水稻镉的生物利用度和吸收。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2025-01-09 DOI: 10.1080/15226514.2024.2449167
Chukwuma Arinzechi, Peicheng Huang, Yang Ping, Hao Xu, Qiming Wang, Chongjian Tang, Mengying Si, Qingzhu Li, Zhihui Yang
{"title":"Calcium-magnesium synergy in reducing cadmium bioavailability and uptake in rice plants.","authors":"Chukwuma Arinzechi, Peicheng Huang, Yang Ping, Hao Xu, Qiming Wang, Chongjian Tang, Mengying Si, Qingzhu Li, Zhihui Yang","doi":"10.1080/15226514.2024.2449167","DOIUrl":"10.1080/15226514.2024.2449167","url":null,"abstract":"<p><p>The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.7%, <i>p</i> < 0.05), followed by Ca2:Mg1 (47.6%), and Ca1:Mg2 (40.7%), all below China's National Food Safety Standard (0.2 mg kg<sup>-1</sup>). Significant reductions were also observed in roots, stems, and leaves (<i>p</i> < 0.05). Ca1:Mg1 minimized Cd translocation by decreasing stem-to-grain transfer by 61.0% and xylem sap Cd by 50.1% (<i>p</i> < 0.05). It also reduced mobile Cd fractions in roots (F_E from 25% to 18%, F_Di from 44% to 37%) and increased DCB-extractable Fe (DCB-Fe) on roots, enhancing Cd immobilization. Ca:Mg treatments raised soil pH by 23.6-25.7% (<i>p</i> < 0.05), shifting Cd from bioavailable forms (F_EX reduced by 9.3%, F_CB by 17.8%) to more stable forms (F_Fe/Mn increased by 15.5%, F_OM by 1.9%). Strong negative correlations (<i>p</i> < 0.05, 0.01) between soil pH, DCB-Fe, Ca, Mg_TF, F_Fe/Mn, and grain Cd indicating their effect in reducing Cd uptake.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"832-841"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant growth stage and melatonin concentration dependency together drive the metal-nutrient dynamics of rice in paddy soil. 植物生长阶段和褪黑素浓度依赖性共同驱动水稻土壤中水稻金属-养分动态。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2025-02-05 DOI: 10.1080/15226514.2025.2460504
Saiqa Menhas, Minjie Chen, Hui Jin, Jiang Xu, Saiyong Zhu, Daohui Lin
{"title":"Plant growth stage and melatonin concentration dependency together drive the metal-nutrient dynamics of rice in paddy soil.","authors":"Saiqa Menhas, Minjie Chen, Hui Jin, Jiang Xu, Saiyong Zhu, Daohui Lin","doi":"10.1080/15226514.2025.2460504","DOIUrl":"10.1080/15226514.2025.2460504","url":null,"abstract":"<p><p>Foliar application of melatonin shows promise in alleviating oxidative stress in rice, though its influence on metal-nutrient dynamics remains unclear. This study investigated the optimal dosage, timing, and concentration of melatonin for regulating elemental uptake, maintaining redox homeostasis, and managing nutrient dynamics in rice cultivated in cadmium (Cd) and selenium (Se)-enriched soils. Melatonin (50, 200 µM) was applied at vegetative stages: jointing (J) and tillering (T). At the J stage, melatonin improved biomass and photosynthetic pigments but inadequately regulated metal-nutrient dynamics due to incomplete redox homeostasis. However, applying 200 µM melatonin during the T stage significantly (<i>p</i> < 0.05) enhanced Se and iron (Fe) root uptake by 48% and 11%, respectively, while also improving shoot translocation. Notably, M200 reduced chromium (Cr) translocation to shoots by 82% (<i>p</i> < 0.05), thereby increasing root retention capacity. Additionally, 50 µM melatonin reduced root Cd uptake by 54% and increased its translocation to shoots by 53% (<i>p</i> < 0.05), alleviating root toxicity and enhancing the detoxification response in aerial tissues. Melatonin application reduced oxidative stress markers, increased proline levels, and enhanced antioxidative enzyme activities, with M200 at the T stage showing pronounced effects. This strategy represents a promising technological approach for managing elemental homeostasis in rice cultivation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"958-971"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing cadmium stress resilience in chickpea (Cicer arietinum L.) via exogenous melatonin application. 外源褪黑激素对鹰嘴豆镉胁迫恢复能力的影响。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2025-01-06 DOI: 10.1080/15226514.2024.2448464
Kiran Shehzadi, Muhammad Faisal Maqsood, Rehana Kanwal, Muhammad Shahbaz, Maria Naqve, Usman Zulfiqar, Muhammad Jamil, Noreen Khalid, Muhammad Fraz Ali, Walid Soufan
{"title":"Enhancing cadmium stress resilience in chickpea (<i>Cicer arietinum</i> L.) via exogenous melatonin application.","authors":"Kiran Shehzadi, Muhammad Faisal Maqsood, Rehana Kanwal, Muhammad Shahbaz, Maria Naqve, Usman Zulfiqar, Muhammad Jamil, Noreen Khalid, Muhammad Fraz Ali, Walid Soufan","doi":"10.1080/15226514.2024.2448464","DOIUrl":"10.1080/15226514.2024.2448464","url":null,"abstract":"<p><p>Chickpea (<i>Cicer arietinum</i> L.) productivity is hindered by biotic and abiotic stresses, particularly heavy metal toxicity. The pot experiment was carried out at the botanical garden of The Islamia University of Bahawalpur, Bahawalpur-Pakistan. The experimental treatments comprised of following details: T0 = Control + 0 µM MT, T1 = Control + 15 µM MT, T2= Control + 30 µM MT, T3 = 100 µM Cd + 0 µM MT, T4 = 100 µM Cd + 15 µM MT and T5 = 100 µM Cd + 30 µM MT. A completely randomized design (CRD) with three replicates was used. Cd stress significantly reduced shoot fresh (51.3%) and dry weight (50.4%), total chlorophyll (53.6%), and shoot Ca<sup>2+</sup> (56.6%). However, it increased proline (38.3%), total phenolics (74.2%), glycine betaine (46.4%), TSS (67.7%), TSP (50%), SOD (49.5%), POD (107%), and CAT (74.2%). Conversely, 30 µM MT improved shoot fresh (78.5%) and dry weight (76%), total chlorophyll (47%), SOD (26.5%), POD (35.8%), CAT (27.8%), proline (19%), TSS (24.5%), TSP (25.8%), and shoot Ca<sup>2+</sup> (56.6%). Results indicated that MT enhanced photosynthetic pigments and antioxidant activities, maintained ion homeostasis, and reduces reactive oxygen species. Desi variety performed better than Kabuli, and 30 µM MT application effectively mitigated Cd toxicity.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"794-809"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable synthesis of silver nanoparticles from Conocarpus seeds for removal of methylene blue. 以松果种子为原料合成纳米银以去除亚甲基蓝。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2025-01-09 DOI: 10.1080/15226514.2025.2450834
Maher M Alrashed, Mohanad El-Harbawi, Chun-Yang Yin, Abdullah Alquraini, Mohamed Aboughaly, Musaad Khaled Aleid, Khaled Bin Bandar, Saad Aljlil, Abdulrahman Saud Alalawi, Rayan Omar Alturkistani
{"title":"Sustainable synthesis of silver nanoparticles from Conocarpus seeds for removal of methylene blue.","authors":"Maher M Alrashed, Mohanad El-Harbawi, Chun-Yang Yin, Abdullah Alquraini, Mohamed Aboughaly, Musaad Khaled Aleid, Khaled Bin Bandar, Saad Aljlil, Abdulrahman Saud Alalawi, Rayan Omar Alturkistani","doi":"10.1080/15226514.2025.2450834","DOIUrl":"10.1080/15226514.2025.2450834","url":null,"abstract":"<p><p>This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO<sub>3</sub>) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM). Results showed that MB degradation occurred quickly within the first 50 min, achieving a 99.60% removal efficiency <i>via</i> adsorption and photocatalytic degradation under optimal conditions (pH = 3, 1 g sample) after 1 h. The maximum adsorption capacity reached 49.80 mg·g<sup>-1</sup>. Furthermore, the AgNPs demonstrated a significant degradation rate of 99.76% within 2 h under UV light, highlighting the synergistic effects of AgNPs in enhancing both adsorption and photocatalysis. This study not only accentuates the potential of Conocarpus seeds as an eco-friendly precursor for AgNP synthesis but also highlights the applicability of AgNPs in wastewater treatment.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"842-851"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing domestic wastewater treatment through four chlorophyta strains-based phycoremediation: nutrient removal efficiency and algal physiology. 四种绿藻藻修复强化生活污水处理:营养物去除效率和藻类生理。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2025-03-13 DOI: 10.1080/15226514.2025.2475121
Imane El Bouzidi, Aafaf Krimech, Abdessamed Hejjaj, Radia Bouterfass, Ouafa Cherifi, Laila Mandi
{"title":"Enhancing domestic wastewater treatment through four chlorophyta strains-based phycoremediation: nutrient removal efficiency and algal physiology.","authors":"Imane El Bouzidi, Aafaf Krimech, Abdessamed Hejjaj, Radia Bouterfass, Ouafa Cherifi, Laila Mandi","doi":"10.1080/15226514.2025.2475121","DOIUrl":"10.1080/15226514.2025.2475121","url":null,"abstract":"<p><p>Phycoremediation is a promising solution for environmentally sustainable wastewater treatment. However, its effectiveness depends on the selection of suitable microalgae species. In this study, four algal species (<i>Chlorella sorokiniana</i>, <i>Chlorella vulgaris</i>, <i>Scenedesmus ecornis</i>, and <i>Strombomonas</i> sp.) were evaluated for their ability to remove pollutants from secondary treated domestic wastewater using multi-soil-layering (MSL) technology. Among the four strains tested, <i>Chlorella sorokiniana</i> exhibited the highest algal density (2.832 ± 0.187 × 10<sup>7</sup> cells/mL) and outperformed other species with phosphorus, nitrogen, and COD removal rates exceeding 82.01%, 63.64%, and 61.09% respectively. In addition, <i>Chlorella sorokiniana</i> had a higher total chlorophyll content of 31.11 µg. L<sup>-1</sup> (Chl a: 15.47 ± 0.148 µg. L<sup>-1</sup>; Chl b: 15.642 ± 0.052 µg. L<sup>-1</sup>) than other species. Physiological analyses of proline and glycine betaine indicated that the two <i>Chlorella</i> strains experienced lower stress levels, which facilitated an accelerated bioremediation process compared to other Chlorophyta, namely <i>Scenedesmus ecornis</i> and <i>Strombomonas</i> sp. The efficiency of <i>C. sorokiniana</i> in the treatment of secondary treated wastewater from MSL, combined with its maximum biomass production, underlines its potential for industrial application. Consequently, there is a compelling interest in evaluating <i>C. sorokiniana</i> within a prototype as a prelude to industrial development.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1066-1074"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143615490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging plant-based remediation technologies against chromite mining toxicity. 利用以植物为基础的补救技术来消除铬铁矿的毒性。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2024-09-27 DOI: 10.1080/15226514.2024.2407908
Chirasmita Mohanty, Chinnadurai Immanuel Selvaraj
{"title":"Leveraging plant-based remediation technologies against chromite mining toxicity.","authors":"Chirasmita Mohanty, Chinnadurai Immanuel Selvaraj","doi":"10.1080/15226514.2024.2407908","DOIUrl":"10.1080/15226514.2024.2407908","url":null,"abstract":"<p><p>The release of hazardous hexavalent chromium from chromite mining seriously threatens habitats and human health by contaminating water, air, and soil. Vulnerability to hexavalent chromium can result in significant health risks, <i>viz,</i> respiratory issues, gastrointestinal illnesses, skin problems in humans, and a plethora of toxic effects in animals. Moreover, Cr(VI) toxicity can adversely affect plant physiology by inhibiting seed germination, nutrient uptake, cell division, and root development, ultimately impairing growth and vitality. Fortunately, innovative techniques such as phytoremediation and nanotechnology have been developed to address heavy metal contamination, offering a promising solution, mainly through the use of hyperaccumulating plants. Biochar derived from plant waste is widely used and is emerging as a sustainable strategy for remediating Cr(VI) contamination. Biochar is rich in carbon and highly influential in removing Cr(VI) from contaminated soils. This approach addresses immediate challenges while providing a sustainable pathway for environmental rehabilitation in chromium mining. Integrating innovative technologies with nature-based solutions offers a holistic approach to reducing the harmful effects of chromium mining, thus protecting both human well-being and ecosystems. This review highlights the impact of Cr(VI) on different living biotas and further emphasizes the use of plants and plant-based materials for the sustainable remediation of chromite mining regions.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"192-205"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of four surfactants on the uptake of per- and polyfluoroalkyl substances (PFAS) by red fescue grass. 四种表面活性剂对红羊茅吸收全氟和多氟烷基物质 (PFAS) 的影响。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2024-08-24 DOI: 10.1080/15226514.2024.2394903
Weilan Zhang, Yanna Liang
{"title":"Impact of four surfactants on the uptake of per- and polyfluoroalkyl substances (PFAS) by red fescue grass.","authors":"Weilan Zhang, Yanna Liang","doi":"10.1080/15226514.2024.2394903","DOIUrl":"10.1080/15226514.2024.2394903","url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) pose great risks to human health and the ecosystem, necessitating effective remediation strategies such as phytoremediation. Surfactants, due to their ability to increase the bioavailability of hydrophobic contaminants, are considered as potential agents to improve phytoremediation for PFAS. In this research, we explored the impact of four surfactants (sodium dodecyl sulfate (SDS), rhamnolipid, Triton X-100, and Glucopone 600 CS UP) on plant growth and the uptake of PFAS by red fescue over 110 days. The results showed that while surfactants at lower concentrations did not negatively affect plant growth, the highest dose (2,500 mg/kg) significantly reduced the dry weight of plant shoots. Although none of the four surfactants led to an increased overall removal efficiency of ∑PFAS by red fescue over 110 days, SDS did enhance the uptake of PFAS compounds with long carbon chain lengths. With SDS addition at 2,500 mg/kg, the average fold increases of long chain PFAS removal were 1.99 for perfluorooctanoic acid (PFOA), 2.44 for perfluorononanoic acid (PFNA), 2.11 for perfluorodecanoic acid (PFDA), 1.52 for perfluoroundecanoic acid (PFUnA), 1.88 for perfluorohexanesulphonic acid (PFHxS), and 2.97 for perfluorooctanesulfonic acid (PFOS). The research indicated that using surfactants, such as SDS at appropriate doses could improve phytoremediation effectiveness in mitigating long-chain PFAS, which is a known challenge in soil remediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"13-22"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Cd tolerance and detoxification strategies of Arabidopsis halleri ssp. gemmifera under high cadmium exposure. 拟南芥对Cd的耐受性及脱毒策略研究。高镉暴露下的金银花。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2025-01-29 DOI: 10.1080/15226514.2025.2456678
Syarifah Hikmah Julinda Sari, Mei-Fang Chien, Chihiro Inoue
{"title":"Exploring Cd tolerance and detoxification strategies of <i>Arabidopsis halleri</i> ssp. <i>gemmifera</i> under high cadmium exposure.","authors":"Syarifah Hikmah Julinda Sari, Mei-Fang Chien, Chihiro Inoue","doi":"10.1080/15226514.2025.2456678","DOIUrl":"10.1080/15226514.2025.2456678","url":null,"abstract":"<p><p><i>Arabidopsis halleri</i> ssp. <i>gemmifera</i> is well known as a Cd hyperaccumulator. Yet, understanding how this plant survives in a high Cd environment without appearing toxicity signs is far from complete. Therefore, this study emphasized on high level of Cd to be applied to evaluate Cd detoxification and tolerance strategies in the hyperaccumulator <i>A. halleri</i> ssp. <i>gemmifera.</i> The results showed that under 300 µM of Cd exposure in a hydroponic system for 56 days, Cd tends to be transported to the stem and leaves. The availability of more than 60% of Cd mobile fractions supported Cd translocation to leaves. EPMA at the cellular level identified Cd localization at the rim of leaf cells that might be associated with the Cd-cell wall form. The Cd soluble fraction in the leaves was found as Cd-free ion and Cd-complexed compound. Interestingly, this plant can still grow despite some inhibition, such as significantly decreasing total chlorophyll and anthocyanins content in the leaves. It was predicted that Cd-free ions were sequestered into the vacuole of leaves cells, by complexing it into organic acid compounds. Therefore, tolerance strategies in <i>A. halleri</i> ssp. <i>gemmifera</i> at high Cd is proved to be associated to compartmentalization and complexation strategies.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"934-940"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ biosynthesis of metallic nanoparticles using Allium sativum and Chondrilla juncea extract: characterization and application in dye decolorization. 利用薤白和蛇床子提取物原位生物合成金属纳米颗粒:特性分析及在染料脱色中的应用。
IF 3.4 4区 环境科学与生态学
International Journal of Phytoremediation Pub Date : 2025-01-01 Epub Date: 2024-10-26 DOI: 10.1080/15226514.2024.2417845
Nouha Sebeia, Mahjoub Jabli
{"title":"In-situ biosynthesis of metallic nanoparticles using <i>Allium sativum</i> and <i>Chondrilla juncea</i> extract: characterization and application in dye decolorization.","authors":"Nouha Sebeia, Mahjoub Jabli","doi":"10.1080/15226514.2024.2417845","DOIUrl":"10.1080/15226514.2024.2417845","url":null,"abstract":"<p><p>The synthesis of catalysts has gained specific concern due to their versatile applications in particular azo dye decolorization. In the current work, metallic nanoparticles (copper and silver) were In-situ biosynthesised using <i>Allium sativum</i> and <i>Chondrilla juncea</i> extract. The obtained <i>Allium</i>-copper oxide and <i>Allium</i>-silver oxide materials were analyzed using SEM, TEM, FT-IR, TGA-DTG, SEM, TEM, and XRD techniques. <i>Allium</i> peels had a rough surface, with nanoparticles equally distributed over it. The crystal structure of <i>Allium</i> peels was altered after the addition of CuO and AgO nanoparticles. The highest residual mass values in the prepared materials indicated that the metallic nanoparticles were, <i>in situ</i>, formed. The prepared materials had worse thermal stability than <i>Allium</i> peel powders. The azo dyes, Calmagite and Naphthol Blue Black B were tested in the catalytic power of the resulting materials. The decolorization process was affected by the dye structure, amount of H<sub>2</sub>O<sub>2</sub>, dye concentration, time of reaction, and temperature of the bath. The activation energy values for <i>Allium</i>-CuO were 18.44 kJ mol<sup>-1</sup> for calmagite, and 23.28 kJ mol<sup>-1</sup> for naphthol blue black, respectively. Nevertheless, the energy values for <i>Allium</i>-AgO were 50.01 kJ mol<sup>-1</sup> for calmagite and 12.44 kJ mol<sup>-1</sup> for Naphthol blue black. The calculated low energy values for the prepared materials suggested the high efficiency of the use of these catalysts in azo dye decolorization under the change of some main experimental conditions.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"341-352"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信