通过修复两种有机废物资源,三种混养微藻的生物能源产品螯合比例。

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Delampady Vidya, Mohammad Sibtain Kadri, Aishwarya Mallikarjun Honnad, Nayana Karicheri, Sudhakar Muthiyal Prabakaran, Arunkumar Kulanthaiyesu
{"title":"通过修复两种有机废物资源,三种混养微藻的生物能源产品螯合比例。","authors":"Delampady Vidya, Mohammad Sibtain Kadri, Aishwarya Mallikarjun Honnad, Nayana Karicheri, Sudhakar Muthiyal Prabakaran, Arunkumar Kulanthaiyesu","doi":"10.1080/15226514.2024.2424309","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, three microalgae species were cultivated using dairy and fish wastewater: <i>Haematococcus pluvialis, Coelastrella saipanensis</i>, and <i>Chlorella</i> sp. The process involved manipulating various physicochemical conditions, to determine optimal growth parameters. Our evaluation considered cell count, biomass productivity, specific growth rate, pigments, carbohydrates, proteins, lipid compositions, and cellulose stored in microalgae. A significant observation of highest cellulose accumulation was recorded in <i>C. saipanensis</i> cultivated in dairy waste (DW) medium (2.54 ± 0.042 µg/mg). In contrast, the species grown in fish waste (FW) media recorded a lower level (0.9405 ± 0.06 µg/mg) of cellulose. In DW, <i>H. pluvialis</i> and <i>C. saipanensis</i> accumulated substantial amounts of astaxanthin and carotenoid, respectively. Carbohydrate, protein, and lipid accumulation was maximized in DW culture, with <i>H. pluvialis</i> exhibiting a more incredible carbohydrate content. Lipid analysis showed as <i>Chlorella</i> sp. was capable of accumulating alpha-linolenic acid. The disparity may be attributed to DW's nutritional and mineral content, which encourages cellulose deposition. The FTIR analysis confirmed the accumulation of cellulose. These findings underscore the potential of DW and FW media as valuable resources for microalgal biofuel and ethanol production, offering a hopeful future for sustainable energy production.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioenergy products sequestration proportions among three mixotrophically cultivated microalgae by remediating two organic waste resources.\",\"authors\":\"Delampady Vidya, Mohammad Sibtain Kadri, Aishwarya Mallikarjun Honnad, Nayana Karicheri, Sudhakar Muthiyal Prabakaran, Arunkumar Kulanthaiyesu\",\"doi\":\"10.1080/15226514.2024.2424309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, three microalgae species were cultivated using dairy and fish wastewater: <i>Haematococcus pluvialis, Coelastrella saipanensis</i>, and <i>Chlorella</i> sp. The process involved manipulating various physicochemical conditions, to determine optimal growth parameters. Our evaluation considered cell count, biomass productivity, specific growth rate, pigments, carbohydrates, proteins, lipid compositions, and cellulose stored in microalgae. A significant observation of highest cellulose accumulation was recorded in <i>C. saipanensis</i> cultivated in dairy waste (DW) medium (2.54 ± 0.042 µg/mg). In contrast, the species grown in fish waste (FW) media recorded a lower level (0.9405 ± 0.06 µg/mg) of cellulose. In DW, <i>H. pluvialis</i> and <i>C. saipanensis</i> accumulated substantial amounts of astaxanthin and carotenoid, respectively. Carbohydrate, protein, and lipid accumulation was maximized in DW culture, with <i>H. pluvialis</i> exhibiting a more incredible carbohydrate content. Lipid analysis showed as <i>Chlorella</i> sp. was capable of accumulating alpha-linolenic acid. The disparity may be attributed to DW's nutritional and mineral content, which encourages cellulose deposition. The FTIR analysis confirmed the accumulation of cellulose. These findings underscore the potential of DW and FW media as valuable resources for microalgal biofuel and ethanol production, offering a hopeful future for sustainable energy production.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2424309\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2424309","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,利用乳品废水和鱼类废水培养了三种微藻类:该过程涉及对各种理化条件的控制,以确定最佳生长参数。我们的评估考虑了细胞数、生物量生产率、特定生长率、色素、碳水化合物、蛋白质、脂质成分以及微藻中储存的纤维素。在奶制品废料(DW)培养基中培养的塞班藻(C. saipanensis)的纤维素积累量最高(2.54 ± 0.042 µg/mg),这一点值得注意。相比之下,在鱼废料(FW)培养基中生长的物种纤维素含量较低(0.9405 ± 0.06 µg/mg)。在 DW 培养基中,H. pluvialis 和 C. saipanensis 分别积累了大量虾青素和类胡萝卜素。在 DW 培养液中,碳水化合物、蛋白质和脂质的积累量最大,其中 H. pluvialis 的碳水化合物含量更高。脂质分析表明,小球藻能够积累α-亚麻酸。这种差异可能是由于 DW 的营养和矿物质含量促进了纤维素的沉积。傅立叶变换红外分析证实了纤维素的积累。这些发现强调了 DW 和 FW 培养基作为微藻生物燃料和乙醇生产的宝贵资源的潜力,为可持续能源生产提供了一个充满希望的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioenergy products sequestration proportions among three mixotrophically cultivated microalgae by remediating two organic waste resources.

In this study, three microalgae species were cultivated using dairy and fish wastewater: Haematococcus pluvialis, Coelastrella saipanensis, and Chlorella sp. The process involved manipulating various physicochemical conditions, to determine optimal growth parameters. Our evaluation considered cell count, biomass productivity, specific growth rate, pigments, carbohydrates, proteins, lipid compositions, and cellulose stored in microalgae. A significant observation of highest cellulose accumulation was recorded in C. saipanensis cultivated in dairy waste (DW) medium (2.54 ± 0.042 µg/mg). In contrast, the species grown in fish waste (FW) media recorded a lower level (0.9405 ± 0.06 µg/mg) of cellulose. In DW, H. pluvialis and C. saipanensis accumulated substantial amounts of astaxanthin and carotenoid, respectively. Carbohydrate, protein, and lipid accumulation was maximized in DW culture, with H. pluvialis exhibiting a more incredible carbohydrate content. Lipid analysis showed as Chlorella sp. was capable of accumulating alpha-linolenic acid. The disparity may be attributed to DW's nutritional and mineral content, which encourages cellulose deposition. The FTIR analysis confirmed the accumulation of cellulose. These findings underscore the potential of DW and FW media as valuable resources for microalgal biofuel and ethanol production, offering a hopeful future for sustainable energy production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信