Vasiraja N, Saravana Sathiya Prabhahar R, Joshua A, Senthil Maharaj Kennedy, Jeen Robert Rb
{"title":"Sustainable Methylene Blue dye removal with activated carbon from Prosopis juliflora stem.","authors":"Vasiraja N, Saravana Sathiya Prabhahar R, Joshua A, Senthil Maharaj Kennedy, Jeen Robert Rb","doi":"10.1080/15226514.2024.2427377","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the environmental challenge posed by the invasive Prosopis juliflora plant by converting its stem into activated carbon for the adsorption of Methylene Blue dye from water. The goal is to create an effective and sustainable wastewater treatment solution. Prosopis juliflora stems were harvested, cleaned, dried, carbonized, and activated with zinc chloride to create Prosopis Juliflora Stem Activated Carbon. This activated carbon was characterized using Brunauer-Emmett-Teller surface area analysis, Fourier transform infrared spectroscopy, and scanning electron microscope imaging. Results revealed a significant surface area of 158.107 m<sup>2</sup>/g and the presence of functional groups essential for adsorption processes. Batch adsorption experiments were conducted to determine the efficiency of activated carbon in removing Methylene Blue dye at various dosages and contact times. The highest adsorption efficiencies were 73.5% at 80 min, 90.1% at 60 min, and 90.65% at 50 min for dosages of 80, 100, and 120 mg, respectively. These findings show that Prosopis Juliflora Stem Activated Carbon is highly effective at removing Methylene Blue dye, providing a cost-effective and environmentally friendly method of wastewater treatment.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2427377","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the environmental challenge posed by the invasive Prosopis juliflora plant by converting its stem into activated carbon for the adsorption of Methylene Blue dye from water. The goal is to create an effective and sustainable wastewater treatment solution. Prosopis juliflora stems were harvested, cleaned, dried, carbonized, and activated with zinc chloride to create Prosopis Juliflora Stem Activated Carbon. This activated carbon was characterized using Brunauer-Emmett-Teller surface area analysis, Fourier transform infrared spectroscopy, and scanning electron microscope imaging. Results revealed a significant surface area of 158.107 m2/g and the presence of functional groups essential for adsorption processes. Batch adsorption experiments were conducted to determine the efficiency of activated carbon in removing Methylene Blue dye at various dosages and contact times. The highest adsorption efficiencies were 73.5% at 80 min, 90.1% at 60 min, and 90.65% at 50 min for dosages of 80, 100, and 120 mg, respectively. These findings show that Prosopis Juliflora Stem Activated Carbon is highly effective at removing Methylene Blue dye, providing a cost-effective and environmentally friendly method of wastewater treatment.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.