减少化肥用量后掺入中国牛奶草对镉污染稻田土壤性质、水稻生长和镉吸收的影响

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Huanyuan Wang, Rui Guo, Chao Zhang
{"title":"减少化肥用量后掺入中国牛奶草对镉污染稻田土壤性质、水稻生长和镉吸收的影响","authors":"Huanyuan Wang, Rui Guo, Chao Zhang","doi":"10.1080/15226514.2024.2431619","DOIUrl":null,"url":null,"abstract":"<p><p>Green manure returning can improve soil fertility and crop production, and immobilize heavy metals in the soil. However, limited information is available on the effects of green manure replacing chemical fertilizers on soil properties and crop growth. In this study, we investigated the effects of Chinese milk vetch incorporation with reduced chemical fertilizers on soil properties, rice agronomic traits and cadmium (Cd) accumulation by field experiments, and four treatments were conducted: chemical fertilizer alone (CF), milk vetch alone (MV), milk vetch plus 80% chemical fertilizers (MVCF80), and milk vetch plus 50% chemical fertilizers (MVCF50). The results showed that all milk vetch treatments decreased soil pH and Eh, and increased the SOM, DOC contents and the activities of catalase and urease. The soil DTPA-Cd contents decreased by 20.41%, 18.20%, and 21.22%, and the Cd accumulation in rice root, stem, leaf, and grain decreased by 21.13%-37.62%, 20.74%-39.61%, and 21.91%-43.56% under MV, MVCF80, and MVCF50 treatments, respectively. Additionally, the MVCF80 treatment showed a better rice agronomic traits and grain yield than others. These data revealed the great potential of milk vetch incorporation with chemical fertilizer reduction in decreasing Cd accumulation in rice plants and improving rice quality and yield of Cd-contaminated paddy fields.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Chinese milk vetch incorporation with reduced chemical fertilizers on the soil properties, rice growth and cadmium uptake in Cd-contaminated paddy fields.\",\"authors\":\"Huanyuan Wang, Rui Guo, Chao Zhang\",\"doi\":\"10.1080/15226514.2024.2431619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Green manure returning can improve soil fertility and crop production, and immobilize heavy metals in the soil. However, limited information is available on the effects of green manure replacing chemical fertilizers on soil properties and crop growth. In this study, we investigated the effects of Chinese milk vetch incorporation with reduced chemical fertilizers on soil properties, rice agronomic traits and cadmium (Cd) accumulation by field experiments, and four treatments were conducted: chemical fertilizer alone (CF), milk vetch alone (MV), milk vetch plus 80% chemical fertilizers (MVCF80), and milk vetch plus 50% chemical fertilizers (MVCF50). The results showed that all milk vetch treatments decreased soil pH and Eh, and increased the SOM, DOC contents and the activities of catalase and urease. The soil DTPA-Cd contents decreased by 20.41%, 18.20%, and 21.22%, and the Cd accumulation in rice root, stem, leaf, and grain decreased by 21.13%-37.62%, 20.74%-39.61%, and 21.91%-43.56% under MV, MVCF80, and MVCF50 treatments, respectively. Additionally, the MVCF80 treatment showed a better rice agronomic traits and grain yield than others. These data revealed the great potential of milk vetch incorporation with chemical fertilizer reduction in decreasing Cd accumulation in rice plants and improving rice quality and yield of Cd-contaminated paddy fields.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2431619\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2431619","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

绿肥还田可以提高土壤肥力和作物产量,并固定土壤中的重金属。然而,有关绿肥替代化肥对土壤性质和作物生长影响的信息还很有限。本研究通过田间试验研究了中国牛奶薇菜与化肥混施对土壤性质、水稻农艺性状和镉(Cd)积累的影响,共进行了四种处理:单施化肥(CF)、单施牛奶薇菜(MV)、牛奶薇菜加 80% 化肥(MVCF80)和牛奶薇菜加 50% 化肥(MVCF50)。结果表明,所有牛奶藤处理都降低了土壤的 pH 值和 Eh 值,提高了土壤中 SOM、DOC 的含量以及过氧化氢酶和脲酶的活性。在 MV、MVCF80 和 MVCF50 处理下,土壤中的 DTPA-Cd 含量分别降低了 20.41%、18.20% 和 21.22%,水稻根、茎、叶和谷粒中的 Cd 累积量分别降低了 21.13%-37.62%、20.74%-39.61% 和 21.91%-43.56%。此外,MVCF80 处理的水稻农艺性状和谷物产量均优于其他处理。这些数据表明,在减少化肥用量的同时施用牛奶藤,对减少镉在水稻植株中的积累、提高镉污染稻田的水稻品质和产量具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Chinese milk vetch incorporation with reduced chemical fertilizers on the soil properties, rice growth and cadmium uptake in Cd-contaminated paddy fields.

Green manure returning can improve soil fertility and crop production, and immobilize heavy metals in the soil. However, limited information is available on the effects of green manure replacing chemical fertilizers on soil properties and crop growth. In this study, we investigated the effects of Chinese milk vetch incorporation with reduced chemical fertilizers on soil properties, rice agronomic traits and cadmium (Cd) accumulation by field experiments, and four treatments were conducted: chemical fertilizer alone (CF), milk vetch alone (MV), milk vetch plus 80% chemical fertilizers (MVCF80), and milk vetch plus 50% chemical fertilizers (MVCF50). The results showed that all milk vetch treatments decreased soil pH and Eh, and increased the SOM, DOC contents and the activities of catalase and urease. The soil DTPA-Cd contents decreased by 20.41%, 18.20%, and 21.22%, and the Cd accumulation in rice root, stem, leaf, and grain decreased by 21.13%-37.62%, 20.74%-39.61%, and 21.91%-43.56% under MV, MVCF80, and MVCF50 treatments, respectively. Additionally, the MVCF80 treatment showed a better rice agronomic traits and grain yield than others. These data revealed the great potential of milk vetch incorporation with chemical fertilizer reduction in decreasing Cd accumulation in rice plants and improving rice quality and yield of Cd-contaminated paddy fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信