ChemElectroChem最新文献

筛选
英文 中文
Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024) 封面:碱性 OER 中阴离子钙化硼酸盐基镍铁 LDH 的电催化性能和动力学行为(ChemElectroChem 22/2024)
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-11-19 DOI: 10.1002/celc.202482201
Maike Berger, Alexandra Markus, Stefan Palkovits, Prof. Regina Palkovits
{"title":"Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024)","authors":"Maike Berger,&nbsp;Alexandra Markus,&nbsp;Stefan Palkovits,&nbsp;Prof. Regina Palkovits","doi":"10.1002/celc.202482201","DOIUrl":"https://doi.org/10.1002/celc.202482201","url":null,"abstract":"<p>The front cover shows a karate fighter who is supposed to represent our electrodes system. She kicks into water and splits the water into O<sub>2</sub> and H<sub>2</sub> bubbles. The feet with which she splits the water are “coated” with our catalyst material NiFe LDH. The same schematic of LDH as in the article was used to illustrate the structure giving reference to our article. Her fists glow with electricity. A wind turbine can be seen in the background to emphasize that green electricity is being used. The woman is standing in a mineral cave and a mineral is shown at the bottom left, which is intended to establish a link to borate/borax minerals. More information can be found in the Research Article by Regina Palkovits and co-workers (DOI: 10.1002/celc.202400457).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202482201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024) 封面:用于液流电池的高性能多孔电极:比表面积和反应动力学的改进(ChemElectroChem 21/2024)
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-11-07 DOI: 10.1002/celc.202482101
Lyuming Pan, Zixiao Guo, Hucheng Li, Yilin Wang, Haoyao Rao, Qinping Jian, Jing Sun, Jiayou Ren, Zhenyu Wang, Bin Liu, Meisheng Han, Yubai Li, Xinzhuang Fan, Wenjia Li, Lei Wei
{"title":"Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024)","authors":"Lyuming Pan,&nbsp;Zixiao Guo,&nbsp;Hucheng Li,&nbsp;Yilin Wang,&nbsp;Haoyao Rao,&nbsp;Qinping Jian,&nbsp;Jing Sun,&nbsp;Jiayou Ren,&nbsp;Zhenyu Wang,&nbsp;Bin Liu,&nbsp;Meisheng Han,&nbsp;Yubai Li,&nbsp;Xinzhuang Fan,&nbsp;Wenjia Li,&nbsp;Lei Wei","doi":"10.1002/celc.202482101","DOIUrl":"https://doi.org/10.1002/celc.202482101","url":null,"abstract":"<p>Redox flow batteries (RFBs) play a crucial role in large-scale energy storage, with electrode design being essential to their performance. Porous electrodes enhance macroscopic/mesoscopic flow, microscopic ion diffusion, and interfacial electrochemical reactions, leading to improved power density and energy efficiency. This review focuses on the design and strategies of RFB optimized electrodes, promoting the achievement of carbon neutrality. More information can be found in the Review Article by Xinzhuang Fan, Wenjia Li, Lei Wei, and co-workers (10.1002/celc.202400460).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 21","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202482101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024) 封面专题:锂离子电池制造的成本效益解决方案:用于高能量富镍 NCM 阴极的烯烃基和橡胶基替代粘合剂的比较分析(ChemElectroChem 21/2024)
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-11-07 DOI: 10.1002/celc.202482102
Susan Montes, Alexander Beutl, Andrea Paolella, Marcus Jahn, Artur Tron
{"title":"Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024)","authors":"Susan Montes,&nbsp;Alexander Beutl,&nbsp;Andrea Paolella,&nbsp;Marcus Jahn,&nbsp;Artur Tron","doi":"10.1002/celc.202482102","DOIUrl":"https://doi.org/10.1002/celc.202482102","url":null,"abstract":"<p>The Cover Feature explores olefin and rubber-based polymers as alternatives to PVDF for binder materials in high-energy Ni-rich NCM LiNixCoyMnzO2 (NCM, x ≥ 0.8) Li-ion cathodes. The evaluation of PIB, SBS, NBR, and HNBR binders includes their physical, chemical, and electrochemical properties and production costs, showing effective competition against PVDF-NMP, by offering stable performance, lower costs and reduced contamination due to their fluorine-free nature. More details are available in the Research Article by Alexander Beutl, Artur Tron, and co-workers (10.1002/celc.202400465).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 21","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202482102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PVDF and PEO Catholytes in Solid-State Cathodes Made by Conventional Slurry Casting 传统浆料浇铸法制造的固态阴极中的 PVDF 和 PEO 阴极
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-10-30 DOI: 10.1002/celc.202400472
Benjamin R. Howell, Joshua W. Gallaway
{"title":"PVDF and PEO Catholytes in Solid-State Cathodes Made by Conventional Slurry Casting","authors":"Benjamin R. Howell,&nbsp;Joshua W. Gallaway","doi":"10.1002/celc.202400472","DOIUrl":"https://doi.org/10.1002/celc.202400472","url":null,"abstract":"<p>All-solid-state Li batteries are desired for better safety and energy density than Li-ion batteries. However, the lack of a penetrating liquid electrolyte requires a much different approach to the design of cathodes. The solid catholyte must enable good Li<sup>+</sup> conduction, form good interfaces with active material particles, and have the strength to bind the cathode together during repeated volume changes. Catholyte formulation is often simply adapted from Li-ion design principles, adding a Li salt to the PVDF binder. Here we show that such a PVDF binder at 10 wt % loading is a starved catholyte condition that compromises cell performance. By substituting a 70 : 30 blend of PVDF:PEO, performance is improved while maintaining nearly the same areal loading of LFP active material. Increasing the catholyte fraction to 16 % can also improve performance, but in this case the benefit of including PEO is lessened, with PVDF alone being an adequate catholyte. EIS analysis shows that PEO helps to form charge transfer interfaces at 10 % catholyte, but that its inclusion can degrade interfaces when there is ample catholyte at 16 %. It is also shown that catholyte agglomeration can impede bulk Li conduction, indicating that microstructural factors are of critical importance.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400472","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ex Situ Electro-Organic Synthesis – A Method for Unrestricted Reaction Control and New Options for Paired Electrolysis 原位电有机合成--不受限制的反应控制方法和配对电解的新选择
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-10-30 DOI: 10.1002/celc.202400489
Helena Pletsch, Yang Lyu, Dominik P. Halter
{"title":"Ex Situ Electro-Organic Synthesis – A Method for Unrestricted Reaction Control and New Options for Paired Electrolysis","authors":"Helena Pletsch,&nbsp;Yang Lyu,&nbsp;Dominik P. Halter","doi":"10.1002/celc.202400489","DOIUrl":"https://doi.org/10.1002/celc.202400489","url":null,"abstract":"<p>Classic <i>in situ</i> electro-organic synthesis with substrates in an electrolyzer must compromise process conditions to balance electro- and thermochemical steps at both electrodes. This often restricts efficiency and product selectivity, since requirements may deviate for electrochemical (catalyst activation) and chemical (organic synthesis) steps, as well as for paired anode- and cathode reactions. Breaking this barrier, we report <i>ex situ</i> electro-organic synthesis as a versatile method that enables unique product selectivity and unusual product pairs. We exemplify the concept for pairing H<sub>2</sub> evolution (HER) with anodic alcohol oxidation. The two-step method accomplishes this by separating cathode reactions from organic substrate oxidation, and anodic electrocatalyst activation from chemical conversion of organic substrates in time and space. First, the electro-oxidation of Ni(OH)<sub>2</sub> anodes to NiOOH is paired with H<sub>2</sub> production by alkaline water electrolysis. Then, “charged” NiOOH electrodes are removed from the electrolyzer and used in external vessels to oxidize model substrate benzyl alcohol under regeneration of Ni(OH)<sub>2</sub>. Free choice of reaction media outside the electrolyzer allows to selectively obtain benzoic acid (in water) or benzaldehyde (in <i>n</i>-hexane), whereas classic <i>in situ</i> electrosynthesis only produces the acid together with H<sub>2</sub>. Perspectively, the method enables electrosynthesis of previously inaccessible products paired to H<sub>2</sub> generation.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry 双极电化学引发的湮灭电化学发光
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-10-30 DOI: 10.1002/celc.202400522
Leslie R. Arias-Aranda, Gerardo Salinas, Haidong Li, Conor F. Hogan, Alexander Kuhn, Laurent Bouffier, Neso Sojic
{"title":"Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry","authors":"Leslie R. Arias-Aranda,&nbsp;Gerardo Salinas,&nbsp;Haidong Li,&nbsp;Conor F. Hogan,&nbsp;Alexander Kuhn,&nbsp;Laurent Bouffier,&nbsp;Neso Sojic","doi":"10.1002/celc.202400522","DOIUrl":"https://doi.org/10.1002/celc.202400522","url":null,"abstract":"<p>Bipolar electrochemistry (BE) combined with electrochemiluminescence (ECL) has gained considerable attention as a versatile and powerful analytical technique operating in a wireless manner. However, only co-reactant ECL has been reported so far when using a BE setup. In this work, the generation of annihilation ECL at the anodic extremity of a bipolar electrode (BPE) is demonstrated in two different spatial arrangements of the electrodes. The reported approach is based on a synergetic effect between the asymmetric electroactivity induced across the BPE, which produces different redox states of [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, and the electro-migration mechanism of the formed ionic species, allowing the localization and concentration of the ECL emission. The presented approach demonstrating annihilation ECL via BE, paves the way for the design of easy and straightforward light-emitting platforms for multiple applications.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400522","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of Cation Exchange Membranes for an Anthraquinone-Ferrocyanide Flow Battery 筛选阳离子交换膜用于蒽醌-亚铁氰化物液流电池
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-10-30 DOI: 10.1002/celc.202400516
Lavrans F. Söffker, Thomas Turek, Ulrich Kunz, Luis F. Arenas
{"title":"Screening of Cation Exchange Membranes for an Anthraquinone-Ferrocyanide Flow Battery","authors":"Lavrans F. Söffker,&nbsp;Thomas Turek,&nbsp;Ulrich Kunz,&nbsp;Luis F. Arenas","doi":"10.1002/celc.202400516","DOIUrl":"https://doi.org/10.1002/celc.202400516","url":null,"abstract":"<p>The disodium salt of 9,10-anthraquinone-2,7-disulphonic acid (2,7-AQDS) is an interesting platform for developing anthraquinone derivative negolytes for aqueous organic flow batteries. Recently, ammonium sulphate supporting electrolytes have been considered for improved stability and solubility. This work advances the 2,7-AQDS/ferrocyanide flow battery with an ammonium sulphate supporting electrolyte (pH 5) by studying the suitability of six commercially available cation exchange membranes: E-620, NR-212, FS-930, F-1075-PK, F-1850 and N-115. Cell cycling under galvanostatic regime plus potential hold was performed to determine coulombic efficiency, energy efficiency and accessible capacity for each membrane as well as capacity fade rate for three selected membranes under extended operation. Cell cycling under galvanostatic control only was carried out to observe transient membrane behavior alongside accessible capacity and apparent capacity fade rate. It was found that the capacity set by the limiting negolyte is consistent with 1.5 electrons per 2,7-AQDS molecule and that energy efficiency shows a simple direct relationship to membrane thickness, with one exception. Meanwhile, four membranes displayed similar apparent capacity fade rates at this laboratory scale irrespective of their thickness, with capacity loss explained in terms of crossover. The best overall performance was attained by the thinnest membranes, E-620 and NR-212.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods 掺锂提高了 V3O7 ⋅ H2O 纳米棒的锌离子水溶液储存性能
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-10-30 DOI: 10.1002/celc.202400504
Yingfang Hu, Siwen Zhang, Yujin Ren, Rongyuan Ge, Yaowen Shi, Xinyu Feng, Hui Li, Baohua Jia, Bosi Yin, Tianyi Ma
{"title":"Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods","authors":"Yingfang Hu,&nbsp;Siwen Zhang,&nbsp;Yujin Ren,&nbsp;Rongyuan Ge,&nbsp;Yaowen Shi,&nbsp;Xinyu Feng,&nbsp;Hui Li,&nbsp;Baohua Jia,&nbsp;Bosi Yin,&nbsp;Tianyi Ma","doi":"10.1002/celc.202400504","DOIUrl":"https://doi.org/10.1002/celc.202400504","url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) offer significant advantages, including high safety, environmental protection and abundant zinc sources. V-based layer-like oxides are promising candidates as cathode materials for ZIBs; however, they face challenges such as low electrical conductivity, poor cycling stability, and limited Zn<sup>2+</sup> storage capacity. In this study, Li-V<sub>3</sub>O<sub>7</sub> ⋅ H<sub>2</sub>O electrode materials were successfully synthesized using a hydrothermal method. The doping of lithium ions has led to a significant expansion of the interlayer spacing within the electrode structure, which enhances ion mobility and improves ion transport speed as well as charge-discharge rates. Additionally, the increased spacing allows for the accommodation of more zinc ions, resulting in greater specific capacity and energy storage. More importantly, this modification reduces structural strain, minimizes the dissolution of vanadium-based materials, and maintains electrode integrity over multiple cycles, thereby improving cycling stability. Consequently, the properties of V<sub>3</sub>O<sub>7</sub> ⋅ H<sub>2</sub>O electrodes were substantially enhanced through lithium-ion doping. The Li-V<sub>3</sub>O<sub>7</sub> ⋅ H<sub>2</sub>O cathode has a specific capacity of 411.8 mAh g<sup>−1</sup> at low current and maintains 83 % of its capacity at 4.0 A g<sup>−1</sup> for 4800 cycles, indicating a noteworthy improvement over pristine V<sub>3</sub>O<sub>7</sub> ⋅ H<sub>2</sub>O. Exhibiting outstanding conductivity, discharge capacity, and cycling stability, it holds immense promise for future high-performance energy storage.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key Ingredients for the Modeling of Single-Atom Electrocatalysts 单原子电催化剂建模的关键要素
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-10-29 DOI: 10.1002/celc.202400476
Giovanni Di Liberto, Gianfranco Pacchioni
{"title":"Key Ingredients for the Modeling of Single-Atom Electrocatalysts","authors":"Giovanni Di Liberto,&nbsp;Gianfranco Pacchioni","doi":"10.1002/celc.202400476","DOIUrl":"https://doi.org/10.1002/celc.202400476","url":null,"abstract":"<p>Single-atom catalysis is gaining interest also because of its potential applications in a broad spectrum of electrochemical reactions. The reactivity of single-atom catalysts (SACs) is typically modeled with first principles approaches taking insight from heterogenous catalysis. An increasing number of studies show that the chemistry of SACs is more complex than often assumed, and shares many aspects in common with coordination chemistry. This evidence raises challenges for computational electrocatalysis of SACs. In this perspective we highlight a few fundamental ingredients that one need to consider to provide reliable predictions on the reactivity of SACs for electrochemical applications. We discuss the role of the local coordination of the metal active phase, the need to use self-interaction corrected functionals, in particular when systems have magnetic ground states. We highlight the formation of unconventional intermediates with respect to classical metal electrodes, the need to include the stability of SACs in electrochemical conditions and the role of solvation in the analysis of new potential catalytic systems. This brief account can be considered as a tutorial underlining the importance of treating the reactivity of SACs. In fact, neglecting some of these aspects could lead to unreliable predictions failing in the design of new electrocatalysts.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400476","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface-Engineered Pt-Ni(111) Nanocatalysts for Boosting Their ORR Performance via Thermal Treatment 表面工程铂镍(111)纳米催化剂通过热处理提高 ORR 性能
IF 3.5 4区 化学
ChemElectroChem Pub Date : 2024-10-29 DOI: 10.1002/celc.202400491
Can Li, Xiaobo Chen, Jinfong Pan, Guangwen Zhou, Jiye Fang
{"title":"Surface-Engineered Pt-Ni(111) Nanocatalysts for Boosting Their ORR Performance via Thermal Treatment","authors":"Can Li,&nbsp;Xiaobo Chen,&nbsp;Jinfong Pan,&nbsp;Guangwen Zhou,&nbsp;Jiye Fang","doi":"10.1002/celc.202400491","DOIUrl":"https://doi.org/10.1002/celc.202400491","url":null,"abstract":"<p>The electrochemical oxygen reduction reaction (ORR) is critical for fuel cell application, and modifying surface structures of electrocatalysts has proven effective in improving their catalytic performances. In this study, we investigated surface-engineered Pt−Ni nano-octahedra subjected to annealing in various atmospheres. All octahedral nanocrystals retained their Pt−Ni {111} facets at an elevated temperature following the annealing treatments. Air annealing led to the formation of nickel-rich shells on the Pt−Ni surface. In contrast, hydrogen (H₂) as a reducing gas facilitated the reduction of surface Ni species, incorporating them into the Pt−Ni bulk alloy, which resulted in superior mass activity and specific activity for ORR-approximately 2.4 and 2.3 times as high as those from the unmodified counterpart, respectively. After 20,000 potential cycles, the H₂/Ar-annealed Pt−Ni nano-octahedra maintained a mass activity of 3.92 A/<span></span><math></math>\u0000, surpassing the initial mass activity of the unannealed counterparts (2.95 A/<span></span><math></math>\u0000). These findings demonstrate a viable approach for tailoring catalyst surfaces to enhance performance in various energy storage and conversion applications.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400491","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信