{"title":"用于碳中性化学合成的CO电解槽","authors":"Wenzhi Teng, Prof. Yuhang Wang","doi":"10.1002/celc.202500043","DOIUrl":null,"url":null,"abstract":"<p>The industrial-scale implementation of carbon monoxide (CO) electrolysis provides a sustainable route to renewable fuels and chemicals. However, scaling up the process faces the challenge of maintaining high Faradaic efficiencies (FEs) and current densities. Here, we address this issue by reinforcing the gas diffusion layer (GDL), optimizing the CO flow rate, and improving heat management. These allow us to fill the performance gap between different electrolyzer stacks from 5 cm<sup>2</sup> to 3×50 cm<sup>2</sup>. Across this scale range, we report FEs of ~80 % for multicarbon (C<sub>2+</sub>) products at 500 mA cm<sup>−2</sup>, and the peak power reaches 580 W, 80 times that of the 5 cm<sup>2</sup> electrolyzer. This work provides practical guides for developing CO electrolysis from bench science to industrial chemical production technology.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500043","citationCount":"0","resultStr":"{\"title\":\"Scaling CO Electrolyzers for Carbon-Neutral Chemical Synthesis\",\"authors\":\"Wenzhi Teng, Prof. Yuhang Wang\",\"doi\":\"10.1002/celc.202500043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The industrial-scale implementation of carbon monoxide (CO) electrolysis provides a sustainable route to renewable fuels and chemicals. However, scaling up the process faces the challenge of maintaining high Faradaic efficiencies (FEs) and current densities. Here, we address this issue by reinforcing the gas diffusion layer (GDL), optimizing the CO flow rate, and improving heat management. These allow us to fill the performance gap between different electrolyzer stacks from 5 cm<sup>2</sup> to 3×50 cm<sup>2</sup>. Across this scale range, we report FEs of ~80 % for multicarbon (C<sub>2+</sub>) products at 500 mA cm<sup>−2</sup>, and the peak power reaches 580 W, 80 times that of the 5 cm<sup>2</sup> electrolyzer. This work provides practical guides for developing CO electrolysis from bench science to industrial chemical production technology.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 14\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202500043\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202500043","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
工业规模实施的一氧化碳(CO)电解为可再生燃料和化学品提供了一条可持续的途径。然而,扩大工艺规模面临着保持高法拉第效率(FEs)和电流密度的挑战。在这里,我们通过加强气体扩散层(GDL)、优化CO流速和改进热管理来解决这个问题。这使我们能够填补不同电解槽堆叠之间的性能差距,从5 cm2到3×50 cm2。在这个尺度范围内,我们报告了500 mA cm - 2下多碳(C2+)产品的FEs为~ 80%,峰值功率达到580 W,是5 cm2电解槽的80倍。为CO电解从实验科学向工业化工生产技术的发展提供了实践指导。
Scaling CO Electrolyzers for Carbon-Neutral Chemical Synthesis
The industrial-scale implementation of carbon monoxide (CO) electrolysis provides a sustainable route to renewable fuels and chemicals. However, scaling up the process faces the challenge of maintaining high Faradaic efficiencies (FEs) and current densities. Here, we address this issue by reinforcing the gas diffusion layer (GDL), optimizing the CO flow rate, and improving heat management. These allow us to fill the performance gap between different electrolyzer stacks from 5 cm2 to 3×50 cm2. Across this scale range, we report FEs of ~80 % for multicarbon (C2+) products at 500 mA cm−2, and the peak power reaches 580 W, 80 times that of the 5 cm2 electrolyzer. This work provides practical guides for developing CO electrolysis from bench science to industrial chemical production technology.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.