Microbial Electrosynthesis for Sustainable Polyhydroxybutyrate Production from CO2 Using Bismuth Nanoparticles

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Aliyah Aliyah, Filemon Jalu Nusantara Putra, Hiro Minamimoto, Yutaro Mori, Prihardi Kahar, Muhammad Iqbal Syauqi, Chiaki Ogino
{"title":"Microbial Electrosynthesis for Sustainable Polyhydroxybutyrate Production from CO2 Using Bismuth Nanoparticles","authors":"Aliyah Aliyah,&nbsp;Filemon Jalu Nusantara Putra,&nbsp;Hiro Minamimoto,&nbsp;Yutaro Mori,&nbsp;Prihardi Kahar,&nbsp;Muhammad Iqbal Syauqi,&nbsp;Chiaki Ogino","doi":"10.1002/celc.202500094","DOIUrl":null,"url":null,"abstract":"<p>Microbial electrochemical technologies (MET) are a promising approach that integrates electrochemical and microbial processes to convert CO<sub>2</sub> into value-added chemicals. Herein, <i>Cupriavidus necator</i> is utilized to produce polyhydroxybutyrate (PHB) using electrochemically synthesized formate as the sole carbon source. Formate is generated via CO<sub>2</sub> reduction using a Bi-based electrode in a physiological electrolyte, achieving concentrations of ≈40 mM with a production rate of 0.05 mmol h<sup>−1</sup> cm<sup>−2</sup> and the highest faradaic efficiency achieved up to 50.81%. Two MET configurations are evaluated: an integrated system, where CO<sub>2</sub> reduction and fermentation occur in a single reactor, and a drop-in system, where electrochemically produced formate is collected and later is used for fermentation. The drop-in system achieves the highest PHB production, reaching ≈340 mg L<sup>−1</sup> within 24 h. By directly utilizing the formate-containing electrolyte as a fermentation medium, this approach simplifies process integration, reduces purification steps, and improves compatibility between electrochemical and microbial systems. These findings highlight the potential of MET as a scalable platform for sustainable biopolymer production from CO<sub>2</sub>.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202500094","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial electrochemical technologies (MET) are a promising approach that integrates electrochemical and microbial processes to convert CO2 into value-added chemicals. Herein, Cupriavidus necator is utilized to produce polyhydroxybutyrate (PHB) using electrochemically synthesized formate as the sole carbon source. Formate is generated via CO2 reduction using a Bi-based electrode in a physiological electrolyte, achieving concentrations of ≈40 mM with a production rate of 0.05 mmol h−1 cm−2 and the highest faradaic efficiency achieved up to 50.81%. Two MET configurations are evaluated: an integrated system, where CO2 reduction and fermentation occur in a single reactor, and a drop-in system, where electrochemically produced formate is collected and later is used for fermentation. The drop-in system achieves the highest PHB production, reaching ≈340 mg L−1 within 24 h. By directly utilizing the formate-containing electrolyte as a fermentation medium, this approach simplifies process integration, reduces purification steps, and improves compatibility between electrochemical and microbial systems. These findings highlight the potential of MET as a scalable platform for sustainable biopolymer production from CO2.

Abstract Image

利用纳米铋纳米颗粒从CO2中可持续地电合成聚羟基丁酸盐
微生物电化学技术(MET)是一种很有前途的方法,将电化学和微生物过程结合起来,将二氧化碳转化为增值化学品。本研究利用Cupriavidus necator以电化学合成甲酸酯为唯一碳源制备聚羟基丁酸酯(PHB)。采用铋基电极在生理电解质中还原CO2生成甲酸盐,浓度约为40 mM,产率为0.05 mmol h−1 cm−2,最高法拉第效率可达50.81%。评估了两种MET配置:一种是集成系统,其中CO2还原和发酵在单个反应器中进行,另一种是插入式系统,其中电化学产生的甲酸盐被收集,然后用于发酵。滴入式体系PHB产量最高,在24 h内达到≈340 mg L−1。通过直接利用含甲酸电解质作为发酵介质,该方法简化了工艺集成,减少了纯化步骤,并提高了电化学和微生物系统之间的兼容性。这些发现突出了MET作为一个可扩展的平台,从二氧化碳中可持续生产生物聚合物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信