Kai Sun, Miao Yu, Jiayu Wang, Hu Zhao, Haochen Liu, Hailan Feng, Yang Liu, Dong Han
{"title":"A Wnt10a-Notch signaling axis controls Hertwig's epithelial root sheath cell behaviors during root furcation patterning.","authors":"Kai Sun, Miao Yu, Jiayu Wang, Hu Zhao, Haochen Liu, Hailan Feng, Yang Liu, Dong Han","doi":"10.1038/s41368-024-00288-x","DOIUrl":"10.1038/s41368-024-00288-x","url":null,"abstract":"<p><p>Human with bi-allelic WNT10A mutations and epithelial Wnt10a knockout mice present enlarged pulp chamber and apical displacement of the root furcation of multi-rooted teeth, known as taurodontism; thus, indicating the critical role of Wnt10a in tooth root morphogenesis. However, the endogenous mechanism by which epithelial Wnt10a regulates Hertwig's epithelial root sheath (HERS) cellular behaviors and contributes to root furcation patterning remains unclear. In this study, we found that HERS in the presumptive root furcating region failed to elongate at an appropriate horizontal level in K14-Cre;Wnt10a<sup>fl/fl</sup> mice from post-natal day 0.5 (PN0.5) to PN4.5. EdU assays and immunofluorescent staining of cyclin D1 revealed significantly decreased proliferation activity of inner enamel epithelial (IEE) cells of HERS in K14-Cre;Wnt10a<sup>fl/fl</sup> mice at PN2.5 and PN3.5. Immunofluorescent staining of E-Cadherin and acetyl-α-Tubulin demonstrated that the IEE cells of HERS tended to divide perpendicularly to the horizontal plane, which impaired the horizontal extension of HERS in the presumptive root furcating region of K14-Cre;Wnt10a<sup>fl/fl</sup> mice. RNA-seq and immunofluorescence showed that the expressions of Jag1 and Notch2 were downregulated in IEE cells of HERS in K14-Cre;Wnt10a<sup>fl/fl</sup> mice. Furthermore, after activation of Notch signaling in K14-Cre;Wnt10a<sup>fl/fl</sup> molars by Notch2 adenovirus and kidney capsule grafts, the root furcation defect was partially rescued. Taken together, our study demonstrates that an epithelial Wnt10a-Notch signaling axis is crucial for modulating HERS cell proper proliferation and horizontal-oriented division during tooth root furcation morphogenesis.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"25"},"PeriodicalIF":14.9,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Promising dawn in tumor microenvironment therapy: engineering oral bacteria.","authors":"Zifei Wang, Wansu Sun, Ruixue Hua, Yuanyin Wang, Yang Li, Hengguo Zhang","doi":"10.1038/s41368-024-00282-3","DOIUrl":"10.1038/s41368-024-00282-3","url":null,"abstract":"<p><p>Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"24"},"PeriodicalIF":14.9,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dingming Huang, Xiaoyan Wang, Jingping Liang, Junqi Ling, Zhuan Bian, Qing Yu, Benxiang Hou, Xinmei Chen, Jiyao Li, Ling Ye, Lei Cheng, Xin Xu, Tao Hu, Hongkun Wu, Bin Guo, Qin Su, Zhi Chen, Lihong Qiu, Wenxia Chen, Xi Wei, Zhengwei Huang, Jinhua Yu, Zhengmei Lin, Qi Zhang, Deqin Yang, Jin Zhao, Shuang Pan, Jian Yang, Jiayuan Wu, Yihuai Pan, Xiaoli Xie, Shuli Deng, Xiaojing Huang, Lan Zhang, Lin Yue, Xuedong Zhou
{"title":"Expert consensus on difficulty assessment of endodontic therapy","authors":"Dingming Huang, Xiaoyan Wang, Jingping Liang, Junqi Ling, Zhuan Bian, Qing Yu, Benxiang Hou, Xinmei Chen, Jiyao Li, Ling Ye, Lei Cheng, Xin Xu, Tao Hu, Hongkun Wu, Bin Guo, Qin Su, Zhi Chen, Lihong Qiu, Wenxia Chen, Xi Wei, Zhengwei Huang, Jinhua Yu, Zhengmei Lin, Qi Zhang, Deqin Yang, Jin Zhao, Shuang Pan, Jian Yang, Jiayuan Wu, Yihuai Pan, Xiaoli Xie, Shuli Deng, Xiaojing Huang, Lan Zhang, Lin Yue, Xuedong Zhou","doi":"10.1038/s41368-024-00285-0","DOIUrl":"https://doi.org/10.1038/s41368-024-00285-0","url":null,"abstract":"<p>Endodontic diseases are a kind of chronic infectious oral disease. Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha. However, it is very essential for endodontic treatment to debride the root canal system and prevent the root canal system from bacterial reinfection after root canal therapy (RCT). Recent research, encompassing bacterial etiology and advanced imaging techniques, contributes to our understanding of the root canal system’s anatomy intricacies and the technique sensitivity of RCT. Success in RCT hinges on factors like patients, infection severity, root canal anatomy, and treatment techniques. Therefore, improving disease management is a key issue to combat endodontic diseases and cure periapical lesions. The clinical difficulty assessment system of RCT is established based on patient conditions, tooth conditions, root canal configuration, and root canal needing retreatment, and emphasizes pre-treatment risk assessment for optimal outcomes. The findings suggest that the presence of risk factors may correlate with the challenge of achieving the high standard required for RCT. These insights contribute not only to improve education but also aid practitioners in treatment planning and referral decision-making within the field of endodontics.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"6 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expert consensus on irrigation and intracanal medication in root canal therapy","authors":"Xiaoying Zou, Xin Zheng, Yuhong Liang, Chengfei Zhang, Bing Fan, Jingping Liang, Junqi Ling, Zhuan Bian, Qing Yu, Benxiang Hou, Zhi Chen, Xi Wei, Lihong Qiu, Wenxia Chen, Wenxi He, Xin Xu, Liuyan Meng, Chen Zhang, Liming Chen, Shuli Deng, Yayan Lei, Xiaoli Xie, Xiaoyan Wang, Jinhua Yu, Jin Zhao, Song Shen, Xuedong Zhou, Lin Yue","doi":"10.1038/s41368-024-00280-5","DOIUrl":"https://doi.org/10.1038/s41368-024-00280-5","url":null,"abstract":"<p>Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical region has yet to be solved, impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes. Additionally, ambiguous clinical indications for root canal medication and non-standardized dressing protocols must be clarified. Inappropriate intracanal medication may present side effects and jeopardize the therapeutic outcomes. Indeed, clinicians have been aware of these concerns for years. Based on the current evidence of studies, this article reviews the properties of various irrigants and intracanal medicaments and elucidates their effectiveness and interactions. The evolution of different kinetic irrigation methods, their effects, limitations, the paradigm shift, current indications, and effective operational procedures regarding intracanal medication are also discussed. This expert consensus aims to establish the clinical operation guidelines for root canal irrigation and a position statement on intracanal medication, thus facilitating a better understanding of infection control, standardizing clinical practice, and ultimately improving the success of endodontic therapy.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"30 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gan Xiong, Nan Xie, Min Nie, Rongsong Ling, Bokai Yun, Jiaxiang Xie, Linlin Ren, Yaqi Huang, Wenjin Wang, Chen Yi, Ming Zhang, Xiuyun Xu, Caihua Zhang, Bin Zou, Leitao Zhang, Xiqiang Liu, Hongzhang Huang, Demeng Chen, Wei Cao, Cheng Wang
{"title":"Single-cell transcriptomics reveals cell atlas and identifies cycling tumor cells responsible for recurrence in ameloblastoma.","authors":"Gan Xiong, Nan Xie, Min Nie, Rongsong Ling, Bokai Yun, Jiaxiang Xie, Linlin Ren, Yaqi Huang, Wenjin Wang, Chen Yi, Ming Zhang, Xiuyun Xu, Caihua Zhang, Bin Zou, Leitao Zhang, Xiqiang Liu, Hongzhang Huang, Demeng Chen, Wei Cao, Cheng Wang","doi":"10.1038/s41368-024-00281-4","DOIUrl":"10.1038/s41368-024-00281-4","url":null,"abstract":"<p><p>Ameloblastoma is a benign tumor characterized by locally invasive phenotypes, leading to facial bone destruction and a high recurrence rate. However, the mechanisms governing tumor initiation and recurrence are poorly understood. Here, we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution. Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response (IR), bone remodeling (BR), tooth development (TD), epithelial development (ED), and cell cycle (CC) signatures. Of note, we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence, which was dominated by the EZH2-mediated program. Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids. These data described the tumor subpopulation and clarified the identity, function, and regulatory mechanism of CC ameloblastoma cells, providing a potential therapeutic target for ameloblastoma.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"21"},"PeriodicalIF":14.9,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tim4 deficiency reduces CD301b<sup>+</sup> macrophage and aggravates periodontitis bone loss.","authors":"Ziming Wang, Hao Zeng, Can Wang, Jiaolong Wang, Jing Zhang, Shuyuan Qu, Yue Han, Liu Yang, Yueqi Ni, Wenan Peng, Huan Liu, Hua Tang, Qin Zhao, Yufeng Zhang","doi":"10.1038/s41368-023-00270-z","DOIUrl":"10.1038/s41368-023-00270-z","url":null,"abstract":"<p><p>Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss. With the progression of periodontitis, the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption. CD301b<sup>+</sup> macrophages are specific to the osteoimmunology microenvironment, and are emerging as vital booster for conducting bone regeneration. However, the key upstream targets of CD301b<sup>+</sup> macrophages and their potential mechanism in periodontitis remain elusive. In this study, we concentrated on the role of Tim4, a latent upstream regulator of CD301b<sup>+</sup> macrophages. We first demonstrated that the transcription level of Timd4 (gene name of Tim4) in CD301b<sup>+</sup> macrophages was significantly upregulated compared to CD301b<sup>-</sup> macrophages via high-throughput RNA sequencing. Moreover, several Tim4-related functions such as apoptotic cell clearance, phagocytosis and engulfment were positively regulated by CD301b<sup>+</sup> macrophages. The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages. The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b<sup>+</sup> macrophages as periodontitis progressed. Furthermore, the deficiency of Tim4 in mice decreased CD301b<sup>+</sup> macrophages and eventually magnified alveolar bone resorption in periodontitis. Additionally, Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b<sup>+</sup> macrophages phenotype. In a word, Tim4 might regulate CD301b<sup>+</sup> macrophages through p38 MAPK signaling pathway in periodontitis, which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"20"},"PeriodicalIF":14.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The osteoclastic activity in apical distal region of molar mesial roots affects orthodontic tooth movement and root resorption in rats.","authors":"Wenhao Zheng, Xiaofeng Lu, Guangjin Chen, Yufeng Shen, Xiaofei Huang, Jinfeng Peng, Jiajia Wang, Ying Yin, Wencheng Song, Mengru Xie, Shaoling Yu, Lili Chen","doi":"10.1038/s41368-024-00284-1","DOIUrl":"10.1038/s41368-024-00284-1","url":null,"abstract":"<p><p>The utilization of optimal orthodontic force is crucial to prevent undesirable side effects and ensure efficient tooth movement during orthodontic treatment. However, the sensitivity of existing detection techniques is not sufficient, and the criteria for evaluating optimal force have not been yet established. Here, by employing 3D finite element analysis methodology, we found that the apical distal region (A-D region) of mesial roots is particularly sensitive to orthodontic force in rats. Tartrate-resistant acidic phosphatase (TRAP)-positive osteoclasts began accumulating in the A-D region under the force of 40 grams (g), leading to alveolar bone resorption and tooth movement. When the force reached 80 g, TRAP-positive osteoclasts started appearing on the root surface in the A-D region. Additionally, micro-computed tomography revealed a significant root resorption at 80 g. Notably, the A-D region was identified as a major contributor to whole root resorption. It was determined that 40 g is the minimum effective force for tooth movement with minimal side effects according to the analysis of tooth movement, inclination, and hyalinization. These findings suggest that the A-D region with its changes on the root surface is an important consideration and sensitive indicator when evaluating orthodontic forces for a rat model. Collectively, our investigations into this region would aid in offering valuable implications for preventing and minimizing root resorption during patients' orthodontic treatment.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"19"},"PeriodicalIF":14.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901898/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The neutrophil–osteogenic cell axis promotes bone destruction in periodontitis","authors":"Yutaro Ando, Masayuki Tsukasaki, Nam Cong-Nhat Huynh, Shizao Zang, Minglu Yan, Ryunosuke Muro, Kazutaka Nakamura, Masatsugu Komagamine, Noriko Komatsu, Kazuo Okamoto, Kenta Nakano, Tadashi Okamura, Akira Yamaguchi, Kazuyuki Ishihara, Hiroshi Takayanagi","doi":"10.1038/s41368-023-00275-8","DOIUrl":"https://doi.org/10.1038/s41368-023-00275-8","url":null,"abstract":"<p>The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNA-sequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"65 11 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinjia Cai, Heyu Zhang, Yanjin Wang, Jianyun Zhang, Tiejun Li
{"title":"Digital pathology-based artificial intelligence models for differential diagnosis and prognosis of sporadic odontogenic keratocysts","authors":"Xinjia Cai, Heyu Zhang, Yanjin Wang, Jianyun Zhang, Tiejun Li","doi":"10.1038/s41368-024-00287-y","DOIUrl":"https://doi.org/10.1038/s41368-024-00287-y","url":null,"abstract":"<p>Odontogenic keratocyst (OKC) is a common jaw cyst with a high recurrence rate. OKC combined with basal cell carcinoma as well as skeletal and other developmental abnormalities is thought to be associated with Gorlin syndrome. Moreover, OKC needs to be differentiated from orthokeratinized odontogenic cyst and other jaw cysts. Because of the different prognosis, differential diagnosis of several cysts can contribute to clinical management. We collected 519 cases, comprising a total of 2 157 hematoxylin and eosin-stained images, to develop digital pathology-based artificial intelligence (AI) models for the diagnosis and prognosis of OKC. The Inception_v3 neural network was utilized to train and test models developed from patch-level images. Finally, whole slide image-level AI models were developed by integrating deep learning-generated pathology features with several machine learning algorithms. The AI models showed great performance in the diagnosis (AUC = 0.935, 95% CI: 0.898–0.973) and prognosis (AUC = 0.840, 95%CI: 0.751–0.930) of OKC. The advantages of multiple slides model for integrating of histopathological information are demonstrated through a comparison with the single slide model. Furthermore, the study investigates the correlation between AI features generated by deep learning and pathological findings, highlighting the interpretative potential of AI models in the pathology. Here, we have developed the robust diagnostic and prognostic models for OKC. The AI model that is based on digital pathology shows promise potential for applications in odontogenic diseases of the jaw.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"35 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stromal thrombospondin 1 suppresses angiogenesis in oral submucous fibrosis","authors":"Xiao Yang, Hui Zhao, Rui Li, Yang Chen, Zhi Xu, Zhengjun Shang","doi":"10.1038/s41368-024-00286-z","DOIUrl":"https://doi.org/10.1038/s41368-024-00286-z","url":null,"abstract":"<p>A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model, treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-β1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs) were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (vFAOs). Consistently, treatment with arecoline reduced the expression of CD31 in vFAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}