Zhichun Jin, Hao Xu, Weiye Zhao, Kejia Zhang, Shengnan Wu, Chuanjun Shu, Linlin Zhu, Yan Wang, Lin Wang, Hanwen Zhang, Bin Yan
{"title":"Macrophage ATF6 accelerates corticotomy-assisted orthodontic tooth movement through promoting Tnfα transcription","authors":"Zhichun Jin, Hao Xu, Weiye Zhao, Kejia Zhang, Shengnan Wu, Chuanjun Shu, Linlin Zhu, Yan Wang, Lin Wang, Hanwen Zhang, Bin Yan","doi":"10.1038/s41368-025-00359-7","DOIUrl":null,"url":null,"abstract":"<p>Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon (RAP). Despite its therapeutic effects, the surgical risk and unclear mechanism hamper the clinical application. Numerous evidences support macrophages as the key immune cells during bone remodeling. Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1<sup>CreERT2</sup>; R26<sup>GFP</sup> lineage tracing system. Fluorescence staining, flow cytometry analysis, and western blot determined the significantly enhanced expression of binding immunoglobulin protein (BiP) and emphasized the activation of sensor activating transcription factor 6 (ATF6) in macrophages. Then, we verified that macrophage specific ATF6 deletion (ATF6<sup>f/f</sup>; CX3CR1<sup>CreERT2</sup> mice) decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy. In contrast, macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement. In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6. At the mechanism level, RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with <i>Tnfα</i> promotor and augmenting its transcription. Additionally, molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element (ERSE). Taken together, ATF6 may aggravate orthodontic bone remodeling by promoting <i>Tnfα</i> transcription in macrophages, suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"58 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-025-00359-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon (RAP). Despite its therapeutic effects, the surgical risk and unclear mechanism hamper the clinical application. Numerous evidences support macrophages as the key immune cells during bone remodeling. Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2; R26GFP lineage tracing system. Fluorescence staining, flow cytometry analysis, and western blot determined the significantly enhanced expression of binding immunoglobulin protein (BiP) and emphasized the activation of sensor activating transcription factor 6 (ATF6) in macrophages. Then, we verified that macrophage specific ATF6 deletion (ATF6f/f; CX3CR1CreERT2 mice) decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy. In contrast, macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement. In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6. At the mechanism level, RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfα promotor and augmenting its transcription. Additionally, molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element (ERSE). Taken together, ATF6 may aggravate orthodontic bone remodeling by promoting Tnfα transcription in macrophages, suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
期刊介绍:
The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to:
Oral microbiology
Oral and maxillofacial oncology
Cariology
Oral inflammation and infection
Dental stem cells and regenerative medicine
Craniofacial surgery
Dental material
Oral biomechanics
Oral, dental, and maxillofacial genetic and developmental diseases
Craniofacial bone research
Craniofacial-related biomaterials
Temporomandibular joint disorder and osteoarthritis
The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.