{"title":"Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis","authors":"Lu Zhang, Chen Lin, Zhuo Chen, Lin Yue, Qing Yu, Benxiang Hou, Junqi Ling, Jingping Liang, Xi Wei, Wenxia Chen, Lihong Qiu, Jiyao Li, Yumei Niu, Zhengmei Lin, Lei Cheng, Wenxi He, Xiaoyan Wang, Dingming Huang, Zhengwei Huang, Weidong Niu, Qi Zhang, Chen Zhang, Deqin Yang, Jinhua Yu, Jin Zhao, Yihuai Pan, Jingzhi Ma, Shuli Deng, Xiaoli Xie, Xiuping Meng, Jian Yang, Xuedong Zhou, Zhi Chen","doi":"10.1038/s41368-024-00333-9","DOIUrl":"https://doi.org/10.1038/s41368-024-00333-9","url":null,"abstract":"<p>Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient’s general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"21 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain","authors":"Zhangyu Ma, Qianqian Wan, Wenpin Qin, Wen Qin, Janfei Yan, Yina Zhu, Yuzhu Wang, Yuxuan Ma, Meichen Wan, Xiaoxiao Han, Haoyan Zhao, Yuxuan Hou, Franklin R. Tay, Lina Niu, Kai Jiao","doi":"10.1038/s41368-024-00336-6","DOIUrl":"https://doi.org/10.1038/s41368-024-00336-6","url":null,"abstract":"<p>Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"35 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Camila Paz Muñoz-Grez, Mabel Angélica Vidal, Tamara Beatriz Rojas, Luciano Esteban Ferrada, Felipe Andrés Zuñiga, Agustin Andrés Vera, Sergio Andrés Sanhueza, Romina Andrea Quiroga, Camilo Daniel Cabrera, Barbara Evelyn Antilef, Ricardo Andrés Cartes, Milovan Paolo Acevedo, Marco Andrés Fraga, Pedro Felipe Alarcón-Zapata, Mauricio Alejandro Hernández, Alexis Marcelo Salas-Burgos, Francisco Tapia-Belmonte, Milly Loreto Yáñez, Erick Marcelo Riquelme, Wilfredo Alejandro González, Cesar Andrés Rivera, Angel Alejandro Oñate, Liliana Ivonne Lamperti, Estefanía Nova-Lamperti
{"title":"Host-microbe computational proteomic landscape in oral cancer revealed key functional and metabolic pathways between Fusobacterium nucleatum and cancer progression","authors":"Camila Paz Muñoz-Grez, Mabel Angélica Vidal, Tamara Beatriz Rojas, Luciano Esteban Ferrada, Felipe Andrés Zuñiga, Agustin Andrés Vera, Sergio Andrés Sanhueza, Romina Andrea Quiroga, Camilo Daniel Cabrera, Barbara Evelyn Antilef, Ricardo Andrés Cartes, Milovan Paolo Acevedo, Marco Andrés Fraga, Pedro Felipe Alarcón-Zapata, Mauricio Alejandro Hernández, Alexis Marcelo Salas-Burgos, Francisco Tapia-Belmonte, Milly Loreto Yáñez, Erick Marcelo Riquelme, Wilfredo Alejandro González, Cesar Andrés Rivera, Angel Alejandro Oñate, Liliana Ivonne Lamperti, Estefanía Nova-Lamperti","doi":"10.1038/s41368-024-00326-8","DOIUrl":"https://doi.org/10.1038/s41368-024-00326-8","url":null,"abstract":"<p>Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood. In this study we investigate the main host-pathogen pathways in OSCC by computational proteomics and the mechanism behind cancer progression by the oral microbiome. The main host-pathogen pathways were analyzed in the secretome of biopsies from patients with OSCC and healthy controls by mass spectrometry. Then, functional assays were performed to evaluate the host-pathogen pathways highlighted in oral cancer. Host proteins associated with LPS response, cell migration/adhesion, and metabolism of amino acids were significantly upregulated in the human cancer proteome, whereas the complement cascade was downregulated in malignant samples. Then, the microbiome analysis revealed large number and variety of peptides from <i>Fusobacterium nucleatum</i> (<i>F. nucleatum</i>) in OSCC samples, from which several enzymes from the L-glutamate degradation pathway were found, indicating that L-glutamate from cancer cells is used as an energy source, and catabolized into butyrate by the bacteria. In fact, we observed that <i>F. nucleatum</i> modulates the cystine/glutamate antiporter in an OSCC cell line by increasing SLC7A11 expression, promoting L-glutamate efflux and favoring bacterial infection. Finally, our results showed that <i>F. nucleatum</i> and its metabolic derivates promote tumor spheroids growth, spheroids-derived cell detachment, epithelial-mesenchymal transition and Galectin-9 upregulation. Altogether, <i>F. nucleatum</i> promotes pro-tumoral mechanism in oral cancer.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"10 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expert consensus on apical microsurgery","authors":"Hanguo Wang, Xin Xu, Zhuan Bian, Jingping Liang, Zhi Chen, Benxiang Hou, Lihong Qiu, Wenxia Chen, Xi Wei, Kaijin Hu, Qintao Wang, Zuhua Wang, Jiyao Li, Dingming Huang, Xiaoyan Wang, Zhengwei Huang, Liuyan Meng, Chen Zhang, Fangfang Xie, Di Yang, Jinhua Yu, Jin Zhao, Yihuai Pan, Shuang Pan, Deqin Yang, Weidong Niu, Qi Zhang, Shuli Deng, Jingzhi Ma, Xiuping Meng, Jian Yang, Jiayuan Wu, Yi Du, Junqi Ling, Lin Yue, Xuedong Zhou, Qing Yu","doi":"10.1038/s41368-024-00334-8","DOIUrl":"https://doi.org/10.1038/s41368-024-00334-8","url":null,"abstract":"<p>Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"68 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingxiao Wang, Haoqing Yang, Chen Zhang, Yue Zhang, Yilin He, Yang Liu, Pan Ma, Jun Li, Zhipeng Fan
{"title":"A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes","authors":"Lingxiao Wang, Haoqing Yang, Chen Zhang, Yue Zhang, Yilin He, Yang Liu, Pan Ma, Jun Li, Zhipeng Fan","doi":"10.1038/s41368-024-00328-6","DOIUrl":"https://doi.org/10.1038/s41368-024-00328-6","url":null,"abstract":"<p>Blood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients. Here, we investigated the effect of Smpd3 on the osteogenic differentiation of BMSCs and utilized exosomes from stem cells overexpressing Smpd3 as the main treatment based on the glucose responsiveness of phenylboronic acid-based polyvinyl alcohol crosslinkers and the protease degradability of gelatin nanoparticles. The combined loading of Smpd3-overexpressing stem cell-derived exosomes (Exos-Smpd3) and nanosilver ions (Ns) to construct a hydrogel delivery system (Exos-Smpd3@Ns) promoted osteogenesis and differentiation of BMSCs in a glucose-fluctuating environment, ectopic osteogenesis of BMSCs in a glucose-fluctuating environment and jawbone regeneration of diabetic dogs in vitro. Mechanistically, Smpd3 promoted the osteogenesis and differentiation of jawbone-derived BMSCs by activating autophagy in the jawbone and inhibiting macrophage polarization and oxidative stress caused by blood glucose fluctuations. These results reveal the role and mechanism of Smpd3 and the Smpd3 overexpression exosome delivery system in promoting BMSC function and bone regeneration under blood glucose fluctuations, providing a theoretical basis and candidate methods for the treatment of bone defects in T2DM patients.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"37 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierfrancesco Pagella, Chai Foong Lai, Laurence Pirenne, Claudio Cantù, Martin E Schwab, Thimios A Mitsiadis
{"title":"Correction: An unexpected role of Nogo-A as regulator of tooth enamel formation.","authors":"Pierfrancesco Pagella, Chai Foong Lai, Laurence Pirenne, Claudio Cantù, Martin E Schwab, Thimios A Mitsiadis","doi":"10.1038/s41368-024-00330-y","DOIUrl":"10.1038/s41368-024-00330-y","url":null,"abstract":"","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"64"},"PeriodicalIF":12.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cuproptosis-related lncRNA JPX regulates malignant cell behavior and epithelial-immune interaction in head and neck squamous cell carcinoma via miR-193b-3p/PLAU axis","authors":"Mouyuan Sun, Ning Zhan, Zhan Yang, Xiaoting Zhang, Jingyu Zhang, Lianjie Peng, Yaxian Luo, Lining Lin, Yiting Lou, Dongqi You, Tao Qiu, Zhichao Liu, Qianting Wang, Yu Liu, Ping Sun, Mengfei Yu, Huiming Wang","doi":"10.1038/s41368-024-00314-y","DOIUrl":"https://doi.org/10.1038/s41368-024-00314-y","url":null,"abstract":"<p>The development, progression, and curative efficacy of head and neck squamous cell carcinoma (HNSCC) are influenced by complex interactions between epithelial and immune cells. Nevertheless, the specific changes in the nature of these interactions and their underlying molecular mechanisms in HNSCC are not yet fully understood. Cuproptosis, a form of programmed cell death that is dependent on copper, has been implicated in cancer pathogenesis. However, the understanding of cuproptosis in the context of HNSCC remains limited. In this study, we have discovered that cuproptosis-related long non-coding RNAs (CRLs) known as JPX play a role in promoting the expression of the oncogene urokinase-type plasminogen activator (PLAU) by competitively binding to miR-193b-3p in HNSCC. The increased activity of the JPX/miR-193b-3p/PLAU axis in malignant epithelial cells leads to enhanced cell proliferation, migration, and invasion in HNSCC. Moreover, the overexpression of PLAU in tumor epithelial cells facilitates its interaction with the receptor PLAUR, predominantly expressed on macrophages, thereby influencing the abnormal epithelial–immune interactome in HNSCC. Notably, the JPX inhibitor Axitinib and the PLAU inhibitor Palbociclib may not only exert their effects on the JPX/miR-193b-3p/PLAU axis that impacts the malignant tumor behaviors and the epithelial–immune cell interactions but also exhibit synergistic effects in terms of suppressing tumor cell growth and arresting cell cycle by targeting epidermal growth factor receptor (EGFR) and cyclin-dependent kinase (CDK4/6) for the treatment of HNSCC.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"94 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organoids in the oral and maxillofacial region: present and future.","authors":"Yufei Wu, Xiang Li, Hanzhe Liu, Xiao Yang, Rui Li, Hui Zhao, Zhengjun Shang","doi":"10.1038/s41368-024-00324-w","DOIUrl":"10.1038/s41368-024-00324-w","url":null,"abstract":"<p><p>The oral and maxillofacial region comprises a variety of organs made up of multiple soft and hard tissue, which are anatomically vulnerable to the pathogenic factors of trauma, inflammation, and cancer. The studies of this intricate entity have been long-termly challenged by a lack of versatile preclinical models. Recently, the advancements in the organoid industry have provided novel strategies to break through this dilemma. Here, we summarize the existing biological and engineering approaches that were employed to generate oral and maxillofacial organoids. Then, we detail the use of modified co-culture methods, such as cell cluster co-inoculation and air-liquid interface culture technology to reconstitute the vascular network and immune microenvironment in assembled organoids. We further retrospect the existing oral and maxillofacial assembled organoids and their potential to recapitulate the homeostasis in parental tissues such as tooth, salivary gland, and mucosa. Finally, we discuss how the next-generation organoids may benefit to regenerative and precision medicine for treatment of oral-maxillofacial illness.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"61"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Beatriz G. de Carvalho, Maedeh Rahimnejad, Rodrigo L. M. S. Oliveira, Prabaha Sikder, Guilherme S. F. A. Saavedra, Sarit B. Bhaduri, Debby Gawlitta, Jos Malda, Darnell Kaigler, Eliandra S. Trichês, Marco C. Bottino
{"title":"Personalized bioceramic grafts for craniomaxillofacial bone regeneration","authors":"Ana Beatriz G. de Carvalho, Maedeh Rahimnejad, Rodrigo L. M. S. Oliveira, Prabaha Sikder, Guilherme S. F. A. Saavedra, Sarit B. Bhaduri, Debby Gawlitta, Jos Malda, Darnell Kaigler, Eliandra S. Trichês, Marco C. Bottino","doi":"10.1038/s41368-024-00327-7","DOIUrl":"https://doi.org/10.1038/s41368-024-00327-7","url":null,"abstract":"<p>The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"57 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierfrancesco Pagella, Chai Foong Lai, Laurence Pirenne, Claudio Cantù, Martin E. Schwab, Thimios A. Mitsiadis
{"title":"An unexpected role of neurite outgrowth inhibitor A as regulator of tooth enamel formation","authors":"Pierfrancesco Pagella, Chai Foong Lai, Laurence Pirenne, Claudio Cantù, Martin E. Schwab, Thimios A. Mitsiadis","doi":"10.1038/s41368-024-00323-x","DOIUrl":"https://doi.org/10.1038/s41368-024-00323-x","url":null,"abstract":"<p>Neurite outgrowth inhibitor A (Nogo-A) is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and ischemic injury. In this work, we investigated the functions of Nogo-A during tooth development to determine its role in dental physiology and pathology. Using immunohistochemistry and in situ hybridization techniques, we showed that Nogo-A is highly expressed in the developing mouse teeth and, most specifically, in the ameloblasts that are responsible for the formation of enamel. Using both <i>Nogo-A</i> knockout and <i>K14-Cre;Nogo-A fl/fl</i> transgenic mice, we showed that Nogo-A deletion in the dental epithelium leads to the formation of defective enamel. This phenotype is associated with overexpression of a set of specific genes involved in ameloblast differentiation and enamel matrix production, such as <i>amelogenin</i>, <i>ameloblastin</i> and <i>enamelin</i>. By characterising the interactome of Nogo-A in the dental epithelium of wild-type and mutant animals, we found that Nogo-A directly interacts with molecules important for regulating gene expression, and its deletion disturbs their cellular localisation. Furthermore, we demonstrated that inhibition of the intracellular, but not cell-surface, Nogo-A is responsible for gene expression modulation in ameloblasts. Taken together, these results reveal an unexpected function for Nogo-A in tooth enamel formation by regulating gene expression and cytodifferentiation events.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"64 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}