Pa Reum Lee, Jihoon Kim, Heather Lynn Rossi, Sena Chung, Seung Yub Han, Junhyong Kim, Seog Bae Oh
{"title":"Transcriptional profiling of dental sensory and proprioceptive trigeminal neurons using single-cell RNA sequencing.","authors":"Pa Reum Lee, Jihoon Kim, Heather Lynn Rossi, Sena Chung, Seung Yub Han, Junhyong Kim, Seog Bae Oh","doi":"10.1038/s41368-023-00246-z","DOIUrl":"10.1038/s41368-023-00246-z","url":null,"abstract":"<p><p>Dental primary afferent (DPA) neurons and proprioceptive mesencephalic trigeminal nucleus (MTN) neurons, located in the trigeminal ganglion and the brainstem, respectively, are essential for controlling masticatory functions. Despite extensive transcriptomic studies on various somatosensory neurons, there is still a lack of knowledge about the molecular identities of these populations due to technical challenges in their circuit-validated isolation. Here, we employed high-depth single-cell RNA sequencing (scRNA-seq) in combination with retrograde tracing in mice to identify intrinsic transcriptional features of DPA and MTN neurons. Our transcriptome analysis revealed five major types of DPA neurons with cell type-specific gene enrichment, some of which exhibit unique mechano-nociceptive properties capable of transmitting nociception in response to innocuous mechanical stimuli in the teeth. Furthermore, we discovered cellular heterogeneity within MTN neurons that potentially contribute to their responsiveness to mechanical stretch in the masseter muscle spindles. Additionally, DPA and MTN neurons represented sensory compartments with distinct molecular profiles characterized by various ion channels, receptors, neuropeptides, and mechanoreceptors. Together, our study provides new biological insights regarding the highly specialized mechanosensory functions of DPA and MTN neurons in pain and proprioception.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"45"},"PeriodicalIF":14.9,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41125789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oral squamous cell carcinomas: state of the field and emerging directions.","authors":"Yunhan Tan, Zhihan Wang, Mengtong Xu, Bowen Li, Zhao Huang, Siyuan Qin, Edouard C Nice, Jing Tang, Canhua Huang","doi":"10.1038/s41368-023-00249-w","DOIUrl":"10.1038/s41368-023-00249-w","url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"44"},"PeriodicalIF":14.9,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41125788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porphyromonas gingivalis, a periodontal pathogen, impairs post-infarcted myocardium by inhibiting autophagosome-lysosome fusion.","authors":"Yuka Shiheido-Watanabe, Yasuhiro Maejima, Shun Nakagama, Qintao Fan, Natsuko Tamura, Tetsuo Sasano","doi":"10.1038/s41368-023-00251-2","DOIUrl":"10.1038/s41368-023-00251-2","url":null,"abstract":"<p><p>While several previous studies have indicated the link between periodontal disease (PD) and myocardial infarction (MI), the underlying mechanisms remain unclear. Autophagy, a cellular quality control process that is activated in several diseases, including heart failure, can be suppressed by Porphyromonas gingivalis (P.g.). However, it is uncertain whether autophagy impairment by periodontal pathogens stimulates the development of cardiac dysfunction after MI. Thus, this study aimed to investigate the relationship between PD and the development of MI while focusing on the role of autophagy. Neonatal rat cardiomyocytes (NRCMs) and MI model mice were inoculated with wild-type P.g. or gingipain-deficient P.g. to assess the effect of autophagy inhibition by P.g. Wild-type P.g.-inoculated NRCMs had lower cell viability than those inoculated with gingipain-deficient P.g. This study also revealed that gingipains can cleave vesicle-associated membrane protein 8 (VAMP8), a protein involved in lysosomal sensitive factor attachment protein receptors (SNAREs), at the 47th lysine residue, thereby inhibiting autophagy. Wild-type P.g.-inoculated MI model mice were more susceptible to cardiac rupture, with lower survival rates and autophagy activity than gingipain-deficient P.g.-inoculated MI model mice. After inoculating genetically modified MI model mice (VAMP8-K47A) with wild-type P.g., they exhibited significantly increased autophagy activation compared with the MI model mice inoculated with wild-type P.g., which suppressed cardiac rupture and enhanced overall survival rates. These findings suggest that gingipains, which are virulence factors of P.g., impair the infarcted myocardium by cleaving VAMP8 and disrupting autophagy. This study confirms the strong association between PD and MI and provides new insights into the potential role of autophagy in this relationship.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"42"},"PeriodicalIF":14.9,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10674050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Liu, Xuedong Zhou, Lin Yue, Benxiang Hou, Qing Yu, Bing Fan, Xi Wei, Lihong Qiu, Zhengwei Huang, Wenwei Xia, Zhe Sun, Hanguo Wang, Liuyan Meng, Bin Peng, Chen Zhang, Shuli Deng, Zhaojie Lu, Deqin Yang, Tiezhou Hou, Qianzhou Jiang, Xiaoli Xie, Xuejun Liu, Jiyao Li, Zuhua Wang, Haipeng Lyu, Ming Xue, Jiuyu Ge, Yi Du, Jin Zhao, Jingping Liang
{"title":"Experts consensus on the procedure of dental operative microscope in endodontics and operative dentistry.","authors":"Bin Liu, Xuedong Zhou, Lin Yue, Benxiang Hou, Qing Yu, Bing Fan, Xi Wei, Lihong Qiu, Zhengwei Huang, Wenwei Xia, Zhe Sun, Hanguo Wang, Liuyan Meng, Bin Peng, Chen Zhang, Shuli Deng, Zhaojie Lu, Deqin Yang, Tiezhou Hou, Qianzhou Jiang, Xiaoli Xie, Xuejun Liu, Jiyao Li, Zuhua Wang, Haipeng Lyu, Ming Xue, Jiuyu Ge, Yi Du, Jin Zhao, Jingping Liang","doi":"10.1038/s41368-023-00247-y","DOIUrl":"10.1038/s41368-023-00247-y","url":null,"abstract":"<p><p>The dental operative microscope has been widely employed in the field of dentistry, particularly in endodontics and operative dentistry, resulting in significant advancements in the effectiveness of root canal therapy, endodontic surgery, and dental restoration. However, the improper use of this microscope continues to be common in clinical settings, primarily due to operators' insufficient understanding and proficiency in both the features and established operating procedures of this equipment. In October 2019, Professor Jingping Liang, Vice Chairman of the Society of Cariology and Endodontology, Chinese Stomatological Association, organized a consensus meeting with Chinese experts in endodontics and operative dentistry. The objective of this meeting was to establish a standard operation procedure for the dental operative microscope. Subsequently, a consensus was reached and officially issued. Over the span of about four years, the content of this consensus has been further developed and improved through practical experience.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"43"},"PeriodicalIF":14.9,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10309916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maxillary sinus floor augmentation: a review of current evidence on anatomical factors and a decision tree.","authors":"Mingyue Lyu, Dingyi Xu, Xiaohan Zhang, Quan Yuan","doi":"10.1038/s41368-023-00248-x","DOIUrl":"10.1038/s41368-023-00248-x","url":null,"abstract":"<p><p>Maxillary sinus floor augmentation using lateral window and crestal technique is considered as predictable methods to increase the residual bone height; however, this surgery is commonly complicated by Schneiderian membrane perforation, which is closely related to anatomical factors. This article aimed to assess anatomical factors on successful augmentation procedures. After review of the current evidence on sinus augmentation techniques, anatomical factors related to the stretching potential of Schneiderian membrane were assessed and a decision tree for the rational choice of surgical approaches was proposed. Schneiderian membrane perforation might occur when local tension exceeds its stretching potential, which is closely related to anatomical variations of the maxillary sinus. Choice of a surgical approach and clinical outcomes are influenced by the stretching potential of Schneiderian membrane. In addition to the residual bone height, clinicians should also consider the stretching potential affected by the membrane health condition, the contours of the maxillary sinus, and the presence of antral septa when evaluating the choice of surgical approaches and clinical outcomes.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"41"},"PeriodicalIF":14.9,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artemisinins inhibit oral candidiasis caused by Candida albicans through the repression on its hyphal development.","authors":"Xiaoyue Liang, Ding Chen, Jiannan Wang, Binyou Liao, Jiawei Shen, Xingchen Ye, Zheng Wang, Chengguang Zhu, Lichen Gou, Xinxuan Zhou, Lei Cheng, Biao Ren, Xuedong Zhou","doi":"10.1038/s41368-023-00245-0","DOIUrl":"10.1038/s41368-023-00245-0","url":null,"abstract":"<p><p>Candida albicans is the most abundant fungal species in oral cavity. As a smart opportunistic pathogen, it increases the virulence by switching its forms from yeasts to hyphae and becomes the major pathogenic agent for oral candidiasis. However, the overuse of current clinical antifungals and lack of new types of drugs highlight the challenges in the antifungal treatments because of the drug resistance and side effects. Anti-virulence strategy is proved as a practical way to develop new types of anti-infective drugs. Here, seven artemisinins, including artemisinin, dihydroartemisinin, artemisinic acid, dihydroartemisinic acid, artesunate, artemether and arteether, were employed to target at the hyphal development, the most important virulence factor of C. albicans. Artemisinins failed to affect the growth, but significantly inhibited the hyphal development of C. albicans, including the clinical azole resistant isolates, and reduced their damage to oral epithelial cells, while arteether showed the strongest activities. The transcriptome suggested that arteether could affect the energy metabolism of C. albicans. Seven artemisinins were then proved to significantly inhibit the productions of ATP and cAMP, while reduced the hyphal inhibition on RAS1 overexpression strain indicating that artemisinins regulated the Ras1-cAMP-Efg1 pathway to inhibit the hyphal development. Importantly, arteether significantly inhibited the fungal burden and infections with no systemic toxicity in the murine oropharyngeal candidiasis models in vivo caused by both fluconazole sensitive and resistant strains. Our results for the first time indicated that artemisinins can be potential antifungal compounds against C. albicans infections by targeting at its hyphal development.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"40"},"PeriodicalIF":14.9,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10309039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Publisher Correction: The interaction between the nervous system and the stomatognathic system: from development to diseases.","authors":"Yuzhu Wu, Yanhua Lan, Jiajie Mao, Jiahui Shen, Ting Kang, Zhijian Xie","doi":"10.1038/s41368-023-00250-3","DOIUrl":"10.1038/s41368-023-00250-3","url":null,"abstract":"","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"39"},"PeriodicalIF":14.9,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuyun Xu, Jiaxiang Xie, Rongsong Ling, Shengqi Ouyang, Gan Xiong, Yanwen Lu, Bokai Yun, Ming Zhang, Wenjin Wang, Xiqiang Liu, Demeng Chen, Cheng Wang
{"title":"Single-cell transcriptomic analysis uncovers the origin and intratumoral heterogeneity of parotid pleomorphic adenoma.","authors":"Xiuyun Xu, Jiaxiang Xie, Rongsong Ling, Shengqi Ouyang, Gan Xiong, Yanwen Lu, Bokai Yun, Ming Zhang, Wenjin Wang, Xiqiang Liu, Demeng Chen, Cheng Wang","doi":"10.1038/s41368-023-00243-2","DOIUrl":"10.1038/s41368-023-00243-2","url":null,"abstract":"<p><p>Pleomorphic adenoma (PA) is the most common benign tumour in the salivary gland and has high morphological complexity. However, the origin and intratumoral heterogeneity of PA are largely unknown. Here, we constructed a comprehensive atlas of PA at single-cell resolution and showed that PA exhibited five tumour subpopulations, three recapitulating the epithelial states of the normal parotid gland, and two PA-specific epithelial cell (PASE) populations unique to tumours. Then, six subgroups of PASE cells were identified, which varied in epithelium, bone, immune, metabolism, stemness and cell cycle signatures. Moreover, we revealed that CD36<sup>+</sup> myoepithelial cells were the tumour-initiating cells (TICs) in PA, and were dominated by the PI3K-AKT pathway. Targeting the PI3K-AKT pathway significantly inhibited CD36<sup>+</sup> myoepithelial cell-derived tumour spheres and the growth of PA organoids. Our results provide new insights into the diversity and origin of PA, offering an important clinical implication for targeting the PI3K-AKT signalling pathway in PA treatment.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"38"},"PeriodicalIF":14.9,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunkun Liu, Nengwen Huang, Xianghe Qiao, Zhiyu Gu, Yongzhi Wu, Jinjin Li, Chengzhou Wu, Bo Li, Longjiang Li
{"title":"Knockdown of PGC1α suppresses dysplastic oral keratinocytes proliferation through reprogramming energy metabolism.","authors":"Yunkun Liu, Nengwen Huang, Xianghe Qiao, Zhiyu Gu, Yongzhi Wu, Jinjin Li, Chengzhou Wu, Bo Li, Longjiang Li","doi":"10.1038/s41368-023-00242-3","DOIUrl":"10.1038/s41368-023-00242-3","url":null,"abstract":"<p><p>Oral potentially malignant disorders (OPMDs) are precursors of oral squamous cell carcinoma (OSCC). Deregulated cellular energy metabolism is a critical hallmark of cancer cells. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) plays vital role in mitochondrial energy metabolism. However, the molecular mechanism of PGC1α on OPMDs progression is less unclear. Therefore, we investigated the effects of knockdown PGC1α on human dysplastic oral keratinocytes (DOKs) comprehensively, including cell proliferation, cell cycle, apoptosis, xenograft tumor, mitochondrial DNA (mtDNA), mitochondrial electron transport chain complexes (ETC), reactive oxygen species (ROS), oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and glucose uptake. We found that knockdown PGC1α significantly inhibited the proliferation of DOKs in vitro and tumor growth in vivo, induced S-phase arrest, and suppressed PI3K/Akt signaling pathway without affecting cell apoptosis. Mechanistically, downregulated of PGC1α decreased mtDNA, ETC, and OCR, while enhancing ROS, glucose uptake, ECAR, and glycolysis by regulating lactate dehydrogenase A (LDHA). Moreover, SR18292 (an inhibitor of PGC1α) induced oxidative phosphorylation dysfunction of DOKs and declined DOK xenograft tumor progression. Thus, our work suggests that PGC1α plays a crucial role in cell proliferation by reprograming energy metabolism and interfering with energy metabolism, acting as a potential therapeutic target for OPMDs.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"37"},"PeriodicalIF":14.9,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10177253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruiye Bi, Qianli Li, Haohan Li, Peng Wang, Han Fang, Xianni Yang, Yiru Wang, Yi Hou, Binbin Ying, Songsong Zhu
{"title":"Divergent chondro/osteogenic transduction laws of fibrocartilage stem cell drive temporomandibular joint osteoarthritis in growing mice.","authors":"Ruiye Bi, Qianli Li, Haohan Li, Peng Wang, Han Fang, Xianni Yang, Yiru Wang, Yi Hou, Binbin Ying, Songsong Zhu","doi":"10.1038/s41368-023-00240-5","DOIUrl":"10.1038/s41368-023-00240-5","url":null,"abstract":"<p><p>The anterior disc displacement (ADD) leads to temporomandibular joint osteoarthritis (TMJOA) and mandibular growth retardation in adolescents. To investigate the potential functional role of fibrocartilage stem cells (FCSCs) during the process, a surgical ADD-TMJOA mouse model was established. From 1 week after model generation, ADD mice exhibited aggravated mandibular growth retardation with osteoarthritis (OA)-like joint cartilage degeneration, manifesting with impaired chondrogenic differentiation and loss of subchondral bone homeostasis. Lineage tracing using Gli1-CreER<sup>+</sup>; Tm<sup>fl/-</sup>mice and Sox9-CreER<sup>+</sup>;Tm<sup>fl/-</sup>mice showed that ADD interfered with the chondrogenic capacity of Gli1<sup>+</sup> FCSCs as well as osteogenic differentiation of Sox9<sup>+</sup> lineage, mainly in the middle zone of TMJ cartilage. Then, a surgically induced disc reposition (DR) mouse model was generated. The inhibited FCSCs capacity was significantly alleviated by DR treatment in ADD mice. And both the ADD mice and adolescent ADD patients had significantly relieved OA phenotype and improved condylar growth after DR treatment. In conclusion, ADD-TMJOA leads to impaired chondrogenic progenitor capacity and osteogenesis differentiation of FCSCs lineage, resulting in cartilage degeneration and loss of subchondral bone homeostasis, finally causing TMJ growth retardation. DR at an early stage could significantly alleviate cartilage degeneration and restore TMJ cartilage growth potential.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"15 1","pages":"36"},"PeriodicalIF":14.9,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10102344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}