{"title":"Abnormal collagen deposition mediated by cartilage oligomeric matrix protein in the pathogenesis of oral submucous fibrosis","authors":"Yafei Xiong, Xuechun Li, Bincan Sun, Jie Zhang, Xiaoshan Wu, Feng Guo","doi":"10.1038/s41368-025-00355-x","DOIUrl":null,"url":null,"abstract":"<p>Abnormal accumulation of collagen fibrils is a hallmark feature of oral submucous fibrosis (OSF). However, the precise characteristics and underlying mechanisms remain unclear, impeding the advancement of potential therapeutic approaches. Here, we observed that collagen I, the main component of the extracellular matrix, first accumulated in the lamina propria and subsequently in the submucosa of OSF specimens as the disease progressed. Using RNA-seq and Immunofluorescence in OSF specimens, we screened the cartilage oligomeric matrix protein (COMP) responsible for the abnormal collagen accumulation. Genetic COMP deficiency reduced arecoline-stimulated collagen I deposition significantly in vivo. In comparison, both COMP and collagen I were upregulated under arecoline stimulation in wild-type mice. Human oral buccal mucosal fibroblasts (hBMFs) also exhibited increased secretion of COMP and collagen I after stimulation in vitro. COMP knockdown in hBMFs downregulates arecoline-stimulated collagen I secretion. We further demonstrated that hBMFs present heterogeneous responses to arecoline stimulation, of which COMP-positive fibroblasts secrete more collagen I. Since COMP is a molecular bridge with Fibril-associated collagens with Interrupted Triple helices (FACIT) in the collagen network, we further screened and identified collagen XIV, a FACIT member, co-localizing with both COMP and collagen I. Collagen XIV expression increased under arecoline stimulation in wild-type mice, whereas it was hardly expressed in the <i>Comp</i><sup><i>-/-</i></sup> mice, even with under stimulation. In summary, we found that COMP may mediates abnormal collagen I deposition by functions with collagen XIV during the progression of OSF, suggesting its potential to be targeted in treating OSF.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"88 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-025-00355-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abnormal accumulation of collagen fibrils is a hallmark feature of oral submucous fibrosis (OSF). However, the precise characteristics and underlying mechanisms remain unclear, impeding the advancement of potential therapeutic approaches. Here, we observed that collagen I, the main component of the extracellular matrix, first accumulated in the lamina propria and subsequently in the submucosa of OSF specimens as the disease progressed. Using RNA-seq and Immunofluorescence in OSF specimens, we screened the cartilage oligomeric matrix protein (COMP) responsible for the abnormal collagen accumulation. Genetic COMP deficiency reduced arecoline-stimulated collagen I deposition significantly in vivo. In comparison, both COMP and collagen I were upregulated under arecoline stimulation in wild-type mice. Human oral buccal mucosal fibroblasts (hBMFs) also exhibited increased secretion of COMP and collagen I after stimulation in vitro. COMP knockdown in hBMFs downregulates arecoline-stimulated collagen I secretion. We further demonstrated that hBMFs present heterogeneous responses to arecoline stimulation, of which COMP-positive fibroblasts secrete more collagen I. Since COMP is a molecular bridge with Fibril-associated collagens with Interrupted Triple helices (FACIT) in the collagen network, we further screened and identified collagen XIV, a FACIT member, co-localizing with both COMP and collagen I. Collagen XIV expression increased under arecoline stimulation in wild-type mice, whereas it was hardly expressed in the Comp-/- mice, even with under stimulation. In summary, we found that COMP may mediates abnormal collagen I deposition by functions with collagen XIV during the progression of OSF, suggesting its potential to be targeted in treating OSF.
期刊介绍:
The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to:
Oral microbiology
Oral and maxillofacial oncology
Cariology
Oral inflammation and infection
Dental stem cells and regenerative medicine
Craniofacial surgery
Dental material
Oral biomechanics
Oral, dental, and maxillofacial genetic and developmental diseases
Craniofacial bone research
Craniofacial-related biomaterials
Temporomandibular joint disorder and osteoarthritis
The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.