International Journal of Forecasting最新文献

筛选
英文 中文
Asymmetric uncertainty: Nowcasting using skewness in real-time data 非对称不确定性:利用实时数据的偏度进行预测
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-29 DOI: 10.1016/j.ijforecast.2024.05.003
Paul Labonne
{"title":"Asymmetric uncertainty: Nowcasting using skewness in real-time data","authors":"Paul Labonne","doi":"10.1016/j.ijforecast.2024.05.003","DOIUrl":"10.1016/j.ijforecast.2024.05.003","url":null,"abstract":"<div><div>This paper presents a new way to account for downside and upside risks when producing density nowcasts of GDP growth. The approach relies on modelling location, scale, and shape common factors in real-time macroeconomic data. While movements in the location generate shifts in the central part of the predictive density, the scale controls its dispersion (akin to general uncertainty) and the shape its asymmetry, or skewness (akin to downside and upside risks). The empirical application is centred on US GDP growth, and the real-time data come from FRED-MD. The results show that there is more to real-time data than their levels or means: their dispersion and asymmetry provide valuable information for nowcasting economic activity. Scale and shape common factors (i) yield more reliable measures of uncertainty and (ii) improve precision when macroeconomic uncertainty is at its peak.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 229-250"},"PeriodicalIF":6.9,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic time series modelling and forecasting of COVID-19 in Norway 挪威 COVID-19 的动态时间序列建模和预测
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-25 DOI: 10.1016/j.ijforecast.2024.05.004
Gunnar Bårdsen , Ragnar Nymoen
{"title":"Dynamic time series modelling and forecasting of COVID-19 in Norway","authors":"Gunnar Bårdsen ,&nbsp;Ragnar Nymoen","doi":"10.1016/j.ijforecast.2024.05.004","DOIUrl":"10.1016/j.ijforecast.2024.05.004","url":null,"abstract":"<div><div>A framework for forecasting new COVID-19 cases jointly with hospital admissions and hospital beds with COVID-19 cases is presented. This project, dubbed CovidMod, produced 21 days ahead forecasts each working day from March 2021 to April 2022. Comparison of RMSFEs from that period, with the RMSFEs of the Norwegian Institute of Public Health (NIPH), favours the CovidMod forecasts, both for new cases and for hospital beds. Another comparison, with the short term forecasts produced by the Cardt method, shows little difference. Next, we present a new model where smooth transition regression is used as a feasible method to include forecasted effects of non-linear policy responses to the deviation between hospital beds and hospital bed capacity, on the forecasts of the original three variables. The forecasting performance of the model with endogenous policy effects is demonstrated retrospectively. It is suggested as a complementary approach to follow when the forecasted variables are generated from processes that include policy responses as realistic features.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 251-269"},"PeriodicalIF":6.9,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting domain-specific models with shrinkage: An application in mortality forecasting 利用收缩技术提升特定领域模型:死亡率预测中的应用
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-20 DOI: 10.1016/j.ijforecast.2024.05.001
Li Li , Han Li , Anastasios Panagiotelis
{"title":"Boosting domain-specific models with shrinkage: An application in mortality forecasting","authors":"Li Li ,&nbsp;Han Li ,&nbsp;Anastasios Panagiotelis","doi":"10.1016/j.ijforecast.2024.05.001","DOIUrl":"10.1016/j.ijforecast.2024.05.001","url":null,"abstract":"<div><div><span>This paper extends the technique of gradient boosting with a focus on using domain-specific models instead of trees. The domain of mortality forecasting is considered as an application. The two novel contributions are to use well-known stochastic mortality models as weak learners in gradient boosting rather than trees, and to include a penalty that shrinks mortality forecasts in adjacent age groups and nearby </span>geographical regions<span> closer together. The proposed method demonstrates superior forecasting performance based on US male mortality data from 1969 to 2019. The proposed approach also enables us to interpret and visualize the results. The boosted model with age-based shrinkage yields the most accurate national-level mortality forecast. For state-level forecasts, spatial shrinkage provides further improvement in accuracy in addition to the benefits of age-based shrinkage. This improvement can be attributed to data sharing across states with large and small populations in adjacent regions and states with common risk factors.</span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 191-207"},"PeriodicalIF":6.9,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141138769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiency of poll-based multi-period forecasting systems for German state elections 基于民调的德国州选举多期预测系统的效率
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-18 DOI: 10.1016/j.ijforecast.2024.04.008
Markus Fritsch , Harry Haupt , Joachim Schnurbus
{"title":"Efficiency of poll-based multi-period forecasting systems for German state elections","authors":"Markus Fritsch ,&nbsp;Harry Haupt ,&nbsp;Joachim Schnurbus","doi":"10.1016/j.ijforecast.2024.04.008","DOIUrl":"10.1016/j.ijforecast.2024.04.008","url":null,"abstract":"<div><div>Election polls are frequently employed to reflect voter sentiment with respect to a particular election (or fixed-event). Despite their widespread use as forecasts and inputs for predictive algorithms, there is substantial uncertainty regarding their efficiency. This uncertainty is amplified by judgment in the form of pollsters applying unpublished weighting schemes to ensure the representativeness of the sampled voters for the underlying population. Efficient forecasting systems incorporate past information instantly, which renders a given fixed-event unpredictable based on past information. This results in all sequential adjustments of the fixed-event forecasts across adjacent time periods (or forecast revisions) being martingale differences. This paper illustrates the theoretical conditions related to weak efficiency of fixed-event forecasting systems based on traditional least squares loss and asymmetrically weighted least absolute deviations (or quantile) loss. Weak efficiency of poll-based multi-period forecasting systems for all German federal state elections since the year 2000 is investigated. The inefficiency of almost all considered forecasting systems is documented and alternative explanations for the findings are discussed.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 670-688"},"PeriodicalIF":6.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The time-varying Multivariate Autoregressive Index model 时变多元自回归指数模型
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-15 DOI: 10.1016/j.ijforecast.2024.04.007
Gianluca Cubadda , Stefano Grassi , Barbara Guardabascio
{"title":"The time-varying Multivariate Autoregressive Index model","authors":"Gianluca Cubadda ,&nbsp;Stefano Grassi ,&nbsp;Barbara Guardabascio","doi":"10.1016/j.ijforecast.2024.04.007","DOIUrl":"10.1016/j.ijforecast.2024.04.007","url":null,"abstract":"<div><div>Many economic variables are characterized by changes in their conditional mean and volatility, and time-varying Vector Autoregressive Models are often used to handle such complexity. Unfortunately, as the number of series grows, they present increasing estimation and interpretation issues. This paper tries to address this problem by proposing a Multivariate Autoregressive Index model that features time-varying mean and volatility. Technically, we develop a new estimation methodology that mixes switching algorithms with the forgetting factors strategy of Koop and Korobilis (2012). This substantially reduces the computational burden and allows one to select or weigh the number of common components, and other data features, in real-time without additional computational costs. Using US macroeconomic data, we provide a forecast exercise that shows the feasibility and usefulness of this model.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 175-190"},"PeriodicalIF":6.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-touch forecasting: A novel method to combine human judgment with statistical algorithms 轻触式预测:将人类判断与统计算法相结合的新方法
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-13 DOI: 10.1016/j.ijforecast.2024.04.003
B.B.J.P.J. van der Staak, R.J.I. Basten, P.P.F.M. van de Calseyde, E. Demerouti, A.G. de Kok
{"title":"Light-touch forecasting: A novel method to combine human judgment with statistical algorithms","authors":"B.B.J.P.J. van der Staak,&nbsp;R.J.I. Basten,&nbsp;P.P.F.M. van de Calseyde,&nbsp;E. Demerouti,&nbsp;A.G. de Kok","doi":"10.1016/j.ijforecast.2024.04.003","DOIUrl":"10.1016/j.ijforecast.2024.04.003","url":null,"abstract":"<div><div>Forecast adjustments are an indispensable component of the forecasting process, but what is the most effective and efficient method to make these adjustments? Understanding how to effectively blend human forecast adjustments with statistical methods is of great importance as, even with the increased possibilities of AI, we can still not include all information available to a human planner. We address this issue by developing a method that builds on literature showing that some adjustments are consistently (in)accurate. More specifically, in two extensive case studies containing more than 3.5 million forecasting decisions, we confirm that planners are accurate in adjusting a statistical forecast in the right direction and determining the magnitude of downward adjustments, and they are inaccurate in determining the magnitude of upward adjustments. Leveraging these results, we introduce a novel method called <em>light-touch forecasting,</em> which attains performance levels similar to those of more traditional forecasting methods while minimizing the involvement of human planners. Furthermore, an online experiment shows an efficiency gain of 38% in terms of time spent on planning compared to traditional judgmental forecasting. We thus optimize the forecasting process by using the strengths of planners while avoiding their weaknesses.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 440-451"},"PeriodicalIF":6.9,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Judgment in macroeconomic output growth predictions: Efficiency, accuracy and persistence 对宏观经济产出增长预测的判断:效率、准确性和持久性
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-13 DOI: 10.1016/j.ijforecast.2024.04.001
Michael Pedersen
{"title":"Judgment in macroeconomic output growth predictions: Efficiency, accuracy and persistence","authors":"Michael Pedersen","doi":"10.1016/j.ijforecast.2024.04.001","DOIUrl":"10.1016/j.ijforecast.2024.04.001","url":null,"abstract":"<div><div>This study applies observations of individual predictions for the first three releases of the US output growth rate to evaluate how applied judgment affects prediction efficiency and accuracy and if judgment is persistent. While the first two issues have been assessed in other studies, there is little evidence of the formation of judgment in macroeconomic projections. Most forecasters produce unbiased predictions, but by employing the median Bloomberg projection as a baseline, it turns out that judgment generally does not improve accuracy. There seems to be persistence in the judgment applied by forecasters in that the sign of the adjustment in the first release prediction carries over to the projections of the two following revisions. One possible explanation is that forecasters use some kind of anchor-and-adjustment heuristic.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 475-486"},"PeriodicalIF":6.9,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143579118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution 预测端点移动的利率:功能性人口年龄分布的作用
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-07 DOI: 10.1016/j.ijforecast.2024.04.006
Jiazi Chen , Zhiwu Hong , Linlin Niu
{"title":"Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution","authors":"Jiazi Chen ,&nbsp;Zhiwu Hong ,&nbsp;Linlin Niu","doi":"10.1016/j.ijforecast.2024.04.006","DOIUrl":"10.1016/j.ijforecast.2024.04.006","url":null,"abstract":"<div><div>An extended dynamic Nelson–Siegel (DNS) model is developed with an additional functional demographic (FD) factor that considers the overall demographic age distribution as a persistent end-shifting driving force. The FD factor in the extended DNS model improves the accuracy of the yield curve forecast by reducing both bias and variance compared with the random walk model, the DNS model, the DNS model with a simple demographic factor of a middle-to-young age ratio, and a benchmark end-shifting model. The model with an unspanned FD factor performs substantially better than the alternative models for most maturities at forecast horizons between one and five years.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 153-174"},"PeriodicalIF":6.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141031213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do oil price forecast disagreement of survey of professional forecasters predict crude oil return volatility? 专业预测师调查中的油价预测分歧能否预测原油收益波动?
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-05-04 DOI: 10.1016/j.ijforecast.2024.04.005
Anton Hasselgren , Ai Jun Hou , Sandy Suardi , Caihong Xu , Xiaoxia Ye
{"title":"Do oil price forecast disagreement of survey of professional forecasters predict crude oil return volatility?","authors":"Anton Hasselgren ,&nbsp;Ai Jun Hou ,&nbsp;Sandy Suardi ,&nbsp;Caihong Xu ,&nbsp;Xiaoxia Ye","doi":"10.1016/j.ijforecast.2024.04.005","DOIUrl":"10.1016/j.ijforecast.2024.04.005","url":null,"abstract":"<div><div>This paper explores whether the dispersion in forecasted crude oil prices from the European Central Bank Survey of Professional Forecasters can provide insights for predicting crude oil return volatility. It is well-documented that higher disagreement among forecasters of asset price implies greater uncertainty and higher return volatility. Using several Generalized Autoregressive Conditional Heteroskedasticity with Mixed Data Sampling (GARCH-MIDAS) models, we find, based on the in-sample estimation results, the oil market experiences greater volatility when the forecasters’ disagreements increase. The model that integrates both historical realized variance and forward-looking forecaster disagreement into the conditional variance, along with the model focusing solely on pure forward-looking forecaster disagreement, exhibits a much superior fit to the data compared to the model relying solely on realized variance and the models considering forward-looking forecasted mean return. The out-of-sample forecasting results unequivocally illustrate that incorporating forecaster disagreement offers valuable insights, markedly enhancing the predictive accuracy of crude oil return volatility within the GARCH-MIDAS model. Moreover, we illustrate the economic benefit of considering forecasters’ disagreement when forecasting volatility, demonstrating its significance for VaR risk management.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 141-152"},"PeriodicalIF":6.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Return predictability, dividend growth, and the persistence of the price–dividend ratio 回报可预测性、股息增长和市盈率的持续性
IF 6.9 2区 经济学
International Journal of Forecasting Pub Date : 2024-04-24 DOI: 10.1016/j.ijforecast.2024.03.005
Adam Goliński , João Madeira , Dooruj Rambaccussing
{"title":"Return predictability, dividend growth, and the persistence of the price–dividend ratio","authors":"Adam Goliński ,&nbsp;João Madeira ,&nbsp;Dooruj Rambaccussing","doi":"10.1016/j.ijforecast.2024.03.005","DOIUrl":"10.1016/j.ijforecast.2024.03.005","url":null,"abstract":"<div><div>Empirical evidence shows that the order of integration of returns and dividend growth is approximately equal to the order of integration of the first-differenced price–dividend ratio, which is about 0.7. Yet the present-value identity implies that the three series should be integrated of the same order. We reconcile this puzzle by showing that the aggregation of antipersistent expected returns and expected dividends gives rise to a price–dividend ratio with properties that mimic long memory in finite samples. In an empirical implementation, we extend and estimate the state-space present-value model by allowing for fractional integration in expected returns and expected dividend growth. This extension improves the model’s forecasting power in-sample and out-of-sample. In addition, expected returns and expected dividend growth modeled as ARFIMA processes are more closely related to future macroeconomic variables, which makes them suitable as leading business cycle indicators.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 92-110"},"PeriodicalIF":6.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140781596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信