Gianluca Cubadda , Stefano Grassi , Barbara Guardabascio
{"title":"The time-varying Multivariate Autoregressive Index model","authors":"Gianluca Cubadda , Stefano Grassi , Barbara Guardabascio","doi":"10.1016/j.ijforecast.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>Many economic variables are characterized by changes in their conditional mean and volatility, and time-varying Vector Autoregressive Models are often used to handle such complexity. Unfortunately, as the number of series grows, they present increasing estimation and interpretation issues. This paper tries to address this problem by proposing a Multivariate Autoregressive Index model that features time-varying mean and volatility. Technically, we develop a new estimation methodology that mixes switching algorithms with the forgetting factors strategy of Koop and Korobilis (2012). This substantially reduces the computational burden and allows one to select or weigh the number of common components, and other data features, in real-time without additional computational costs. Using US macroeconomic data, we provide a forecast exercise that shows the feasibility and usefulness of this model.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 175-190"},"PeriodicalIF":6.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000384","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Many economic variables are characterized by changes in their conditional mean and volatility, and time-varying Vector Autoregressive Models are often used to handle such complexity. Unfortunately, as the number of series grows, they present increasing estimation and interpretation issues. This paper tries to address this problem by proposing a Multivariate Autoregressive Index model that features time-varying mean and volatility. Technically, we develop a new estimation methodology that mixes switching algorithms with the forgetting factors strategy of Koop and Korobilis (2012). This substantially reduces the computational burden and allows one to select or weigh the number of common components, and other data features, in real-time without additional computational costs. Using US macroeconomic data, we provide a forecast exercise that shows the feasibility and usefulness of this model.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.