{"title":"利用收缩技术提升特定领域模型:死亡率预测中的应用","authors":"Li Li , Han Li , Anastasios Panagiotelis","doi":"10.1016/j.ijforecast.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div><span>This paper extends the technique of gradient boosting with a focus on using domain-specific models instead of trees. The domain of mortality forecasting is considered as an application. The two novel contributions are to use well-known stochastic mortality models as weak learners in gradient boosting rather than trees, and to include a penalty that shrinks mortality forecasts in adjacent age groups and nearby </span>geographical regions<span> closer together. The proposed method demonstrates superior forecasting performance based on US male mortality data from 1969 to 2019. The proposed approach also enables us to interpret and visualize the results. The boosted model with age-based shrinkage yields the most accurate national-level mortality forecast. For state-level forecasts, spatial shrinkage provides further improvement in accuracy in addition to the benefits of age-based shrinkage. This improvement can be attributed to data sharing across states with large and small populations in adjacent regions and states with common risk factors.</span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 191-207"},"PeriodicalIF":6.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting domain-specific models with shrinkage: An application in mortality forecasting\",\"authors\":\"Li Li , Han Li , Anastasios Panagiotelis\",\"doi\":\"10.1016/j.ijforecast.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>This paper extends the technique of gradient boosting with a focus on using domain-specific models instead of trees. The domain of mortality forecasting is considered as an application. The two novel contributions are to use well-known stochastic mortality models as weak learners in gradient boosting rather than trees, and to include a penalty that shrinks mortality forecasts in adjacent age groups and nearby </span>geographical regions<span> closer together. The proposed method demonstrates superior forecasting performance based on US male mortality data from 1969 to 2019. The proposed approach also enables us to interpret and visualize the results. The boosted model with age-based shrinkage yields the most accurate national-level mortality forecast. For state-level forecasts, spatial shrinkage provides further improvement in accuracy in addition to the benefits of age-based shrinkage. This improvement can be attributed to data sharing across states with large and small populations in adjacent regions and states with common risk factors.</span></div></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"41 1\",\"pages\":\"Pages 191-207\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207024000402\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000402","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Boosting domain-specific models with shrinkage: An application in mortality forecasting
This paper extends the technique of gradient boosting with a focus on using domain-specific models instead of trees. The domain of mortality forecasting is considered as an application. The two novel contributions are to use well-known stochastic mortality models as weak learners in gradient boosting rather than trees, and to include a penalty that shrinks mortality forecasts in adjacent age groups and nearby geographical regions closer together. The proposed method demonstrates superior forecasting performance based on US male mortality data from 1969 to 2019. The proposed approach also enables us to interpret and visualize the results. The boosted model with age-based shrinkage yields the most accurate national-level mortality forecast. For state-level forecasts, spatial shrinkage provides further improvement in accuracy in addition to the benefits of age-based shrinkage. This improvement can be attributed to data sharing across states with large and small populations in adjacent regions and states with common risk factors.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.