International Journal of Minerals, Metallurgy, and Materials最新文献

筛选
英文 中文
Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions 含铁成分的 3d 带相关氧化物中的金属-绝缘体转变
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2712-8
Yiping Yu, Yuchen Cui, Jiangang He, Wei Mao, Jikun Chen
{"title":"Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions","authors":"Yiping Yu, Yuchen Cui, Jiangang He, Wei Mao, Jikun Chen","doi":"10.1007/s12613-023-2712-8","DOIUrl":"https://doi.org/10.1007/s12613-023-2712-8","url":null,"abstract":"<p>Metal-to-insulator transitions (MITs), which are achieved in 3d-band correlated transitional metal oxides, trigger abrupt variations in electrical, optical, and/or magnetic properties beyond those of conventional semiconductors. Among such material families, iron (Fe: 3d<sup>6</sup>4s<sup>2</sup>)-containing oxides pique interest owing to their widely tunable MIT properties, which are associated with the various valence states of Fe. Their potential electronic applications also show promise, given the large abundance of Fe on Earth. Representative MIT properties triggered by critical temperature (<i>T</i><sub>MIT</sub>) were reported for <i>Re</i>Fe<sub>2</sub>O<sub>4</sub> (Fe<sup>2.5+</sup>), <i>Re</i>BaFe<sub>2</sub>O<sub>5</sub> (Fe<sup>2.5+</sup>), Fe<sub>3</sub>O<sub>4</sub> (Fe<sup>2.67+</sup>), <i>Re</i><sub>1/3</sub>Sr<sub>2/3</sub>FeO<sub>3</sub> (Fe<sup>3.67+</sup>), <i>Re</i>Cu<sub>3</sub>Fe<sub>4</sub>O<sub>12</sub> (Fe<sup>3.75+</sup>), and Ca<sub>1−<i>x</i></sub>Sr<sub><i>x</i></sub>FeO<sub>3</sub> (Fe<sup>4+</sup>) (where <i>Re</i> represents rare-earth elements). The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe. Herein, we review the material family of Fe-containing MIT oxides, their MIT functionalities, and their respective mechanisms. From the perspective of potentially correlated electronic applications, the tunability of the <i>T</i><sub>MIT</sub> and its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality. In particular, we highlight the abrupt MIT and wide tunability of <i>T</i><sub>MIT</sub> of Fe-containing quadruple perovskites, such as <i>Re</i>Cu<sub>3</sub>Fe<sub>4</sub>O<sub>12</sub>. However, their effective material synthesis still needs to be further explored to cater to potential applications.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise regulation of the phase transformation for pyrolusite during the reduction roasting process 在还原焙烧过程中对辉绿岩相变的精确调节
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2688-4
Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang
{"title":"Precise regulation of the phase transformation for pyrolusite during the reduction roasting process","authors":"Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang","doi":"10.1007/s12613-023-2688-4","DOIUrl":"https://doi.org/10.1007/s12613-023-2688-4","url":null,"abstract":"<p>The mechanism involved in the phase transformation process of pyrolusite (MnO<sub>2</sub>) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn<sup>2+</sup>) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min<sup>−1</sup>, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO<sub>2</sub>→Mn<sub>2</sub>O<sub>3</sub>→Mn<sub>3</sub>O<sub>4</sub>→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts 航空铝合金部件上的高耐腐蚀和耐磨损化学镍-P 梯度涂层
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2689-3
Bo Wang, Jiawei Li, Zhihui Xie, Gengjie Wang, Gang Yu
{"title":"High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts","authors":"Bo Wang, Jiawei Li, Zhihui Xie, Gengjie Wang, Gang Yu","doi":"10.1007/s12613-023-2689-3","DOIUrl":"https://doi.org/10.1007/s12613-023-2689-3","url":null,"abstract":"<p>A Ni-P alloy gradient coating consisting of multiple electroless Ni-P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni-P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90° and was not corroded visually after 500 h of neutral salt spray test at 35°C. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching 用微波焙烧和碱浸出法从钼精矿制备钼酸钠
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2727-1
Fengjuan Zhang, Chenhui Liu, Srinivasakannan Chandrasekar, Yingwei Li, Fuchang Xu
{"title":"Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching","authors":"Fengjuan Zhang, Chenhui Liu, Srinivasakannan Chandrasekar, Yingwei Li, Fuchang Xu","doi":"10.1007/s12613-023-2727-1","DOIUrl":"https://doi.org/10.1007/s12613-023-2727-1","url":null,"abstract":"<p>The preparation process of sodium molybdate has the disadvantages of high energy consumption, low thermal efficiency, and high raw material requirement of molybdenum trioxide, in order to realize the green and efficient development of molybdenum concentrate resources, this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching. Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate. The effects of roasting temperature, holding time, and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O) were investigated. Under the optimal process conditions: roasting temperature of 700°C, holding time of 110 min, and power-to-mass ratio of 110 W/g, the molybdenum state of existence was converted from MoS<sub>2</sub> to MoO<sub>3</sub>. The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated, the optimal leaching conditions include a solution concentration of 2.5 mol/L, a liquid-to-solid ratio of 2 mL/g, a leaching temperature of 60°C, and leaching solution termination at pH 8. The optimum conditions result in a leaching rate of sodium molybdate of 96.24%. Meanwhile, the content of sodium molybdate reaches 94.08wt% after leaching and removing impurities. Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution. This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate, which provides a new idea for the high-value utilization of molybdenum concentrate.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method 用 CALPHAD 方法预测镁铝镭合金的热导率
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2759-6
Hongxia Li, Wenjun Xu, Yufei Zhang, Shenglan Yang, Lijun Zhang, Bin Liu, Qun Luo, Qian Li
{"title":"Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method","authors":"Hongxia Li, Wenjun Xu, Yufei Zhang, Shenglan Yang, Lijun Zhang, Bin Liu, Qun Luo, Qian Li","doi":"10.1007/s12613-023-2759-6","DOIUrl":"https://doi.org/10.1007/s12613-023-2759-6","url":null,"abstract":"<p>Mg−Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition. The accurate prediction of thermal conductivity is a prerequisite for designing Mg−Al alloys with high thermal conductivity. Thus, databases for predicting temperature- and composition-dependent thermal conductivities must be established. In this study, Mg−Al−La alloys with different contents of Al<sub>2</sub>La, Al<sub>3</sub>La, and Al<sub>11</sub>La<sub>3</sub> phases and solid solubility of Al in the α-Mg phase were designed. The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated. Experimental results revealed a second phase transformation from Al<sub>2</sub>La to Al<sub>3</sub>La and further to Al<sub>11</sub>La<sub>3</sub> with the increasing Al content at a constant La amount. The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al<sub>2</sub>La &gt; Al<sub>3</sub>La &gt; Al<sub>11</sub>La<sub>3</sub>. Compared with the second phase, an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity. On the basis of the experimental data, a database of the reciprocal thermal diffusivity of the Mg−Al−La system was established by calculation of the phase diagram (CALPHAD) method. With a standard error of ±1.2 W/(m·K), the predicted results were in good agreement with the experimental data. The established database can be used to design Mg−Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production N 掺杂石墨烯量子点装饰的 N-TiO2/P 掺杂多孔空心 g-C3N4 纳米管复合光催化剂用于抗生素光降解和 H2 生产
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2678-6
Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Junjie Zhang, Shen’gen Zhang
{"title":"N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production","authors":"Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Junjie Zhang, Shen’gen Zhang","doi":"10.1007/s12613-023-2678-6","DOIUrl":"https://doi.org/10.1007/s12613-023-2678-6","url":null,"abstract":"<p>Exclusive responsiveness to ultraviolet light (∼3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO<sub>2</sub>. We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO<sub>2</sub>/P-doped porous hollow g-C<sub>3</sub>N<sub>4</sub> nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1%G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of 0.1%G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO<sub>2</sub>, PCN, and N-TiO<sub>2</sub>/PCN (TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO<sub>2</sub> and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO<sub>2</sub>, PCNs, and TPCN-1, the H<sub>2</sub> production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4 times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1%G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1%G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 基于氧平衡机制和深度神经网络的混合模型用于预测转炉吹氧时间
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2670-1
Xin Shao, Qing Liu, Zicheng Xin, Jiangshan Zhang, Tao Zhou, Shaoshuai Li
{"title":"Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network","authors":"Xin Shao, Qing Liu, Zicheng Xin, Jiangshan Zhang, Tao Zhou, Shaoshuai Li","doi":"10.1007/s12613-023-2670-1","DOIUrl":"https://doi.org/10.1007/s12613-023-2670-1","url":null,"abstract":"<p>The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process, which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error ±300 m<sup>3</sup> is 96.67%; determination coefficient (<i>R</i><sup>2</sup>) and root mean square error (RMSE) are 0.6984 and 150.03 m<sup>3</sup>, respectively. The oxygen blow time prediction hit ratio within the error ±0.6 min is 89.50%; <i>R</i><sup><i>2</i></sup> and RMSE are 0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor 通过添加 Mg2+ 实现双离子载流子存储,打造高能量、长寿命的锌-离子混合电容器
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2724-4
Junjie Zhang, Xiang Wu
{"title":"Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor","authors":"Junjie Zhang, Xiang Wu","doi":"10.1007/s12613-023-2724-4","DOIUrl":"https://doi.org/10.1007/s12613-023-2724-4","url":null,"abstract":"<p>Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs). However, their energy storage mechanisms in zinc-based systems are still under debate. Herein, we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions. And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors. The zinc-ion capacitor with Mg<sup>2+</sup> mixed solution delivers 82 mAh·g<sup>−1</sup> capacity at 1 A·g<sup>−1</sup> and maintains 91% of the original capacitance after 10000 cycling. It is superior to the other assembled zinc-ion devices in single-component electrolytes. The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 镍基超合金 GH4738 在极端温度下的竞争氧化行为
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2687-5
Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou, Yanling Zhang
{"title":"Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature","authors":"Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou, Yanling Zhang","doi":"10.1007/s12613-023-2687-5","DOIUrl":"https://doi.org/10.1007/s12613-023-2687-5","url":null,"abstract":"<p>A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200°C, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding, the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900–1100°C was predicted.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications 用于核聚变应用的钨基 WTaVCr 难熔高熵合金的火花等离子烧结
IF 2.232 2区 材料科学
International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI: 10.1007/s12613-023-2711-9
Yongchul Yoo, Xiang Zhang, Fei Wang, Xin Chen, Xing-Zhong Li, Michael Nastasi, Bai Cui
{"title":"Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications","authors":"Yongchul Yoo, Xiang Zhang, Fei Wang, Xin Chen, Xing-Zhong Li, Michael Nastasi, Bai Cui","doi":"10.1007/s12613-023-2711-9","DOIUrl":"https://doi.org/10.1007/s12613-023-2711-9","url":null,"abstract":"<p>W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta<sub>2</sub>VO<sub>6</sub> through a combined analysis of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2 μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro- and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":2.232,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信