High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bo Wang, Jiawei Li, Zhihui Xie, Gengjie Wang, Gang Yu
{"title":"High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts","authors":"Bo Wang, Jiawei Li, Zhihui Xie, Gengjie Wang, Gang Yu","doi":"10.1007/s12613-023-2689-3","DOIUrl":null,"url":null,"abstract":"<p>A Ni-P alloy gradient coating consisting of multiple electroless Ni-P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni-P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90° and was not corroded visually after 500 h of neutral salt spray test at 35°C. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"59 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2689-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A Ni-P alloy gradient coating consisting of multiple electroless Ni-P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni-P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90° and was not corroded visually after 500 h of neutral salt spray test at 35°C. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.

航空铝合金部件上的高耐腐蚀和耐磨损化学镍-P 梯度涂层
在航空铝合金上制备了由多个不同磷含量的化学镍-P 涂层组成的镍-P 合金梯度涂层。研究人员采用了多种表征和电化学技术来表征不同 Ni-P 涂层的形貌、相结构、元素组成和腐蚀保护性能。梯度涂层显示出良好的附着力和较高的耐腐蚀性和耐磨性,使铝合金能够应用于恶劣的环境中。结果表明,双锌浸泡对获得优异的附着力(81.2 N)至关重要。即使在角度大于 90° 的弯曲测试中,最佳涂层也没有剥落和碎裂,在 35°C 下进行 500 小时的中性盐雾测试后,目测也没有腐蚀。高耐腐蚀性归因于三个不同镍合金层中这些微缺陷的错位以及外层高 P 含量的非晶态结构。这些发现为探索功能梯度涂层提供了指导,以满足铝合金零件在复杂恶劣航空环境中的高应用要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信