Precise regulation of the phase transformation for pyrolusite during the reduction roasting process

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang
{"title":"Precise regulation of the phase transformation for pyrolusite during the reduction roasting process","authors":"Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang","doi":"10.1007/s12613-023-2688-4","DOIUrl":null,"url":null,"abstract":"<p>The mechanism involved in the phase transformation process of pyrolusite (MnO<sub>2</sub>) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn<sup>2+</sup>) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min<sup>−1</sup>, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO<sub>2</sub>→Mn<sub>2</sub>O<sub>3</sub>→Mn<sub>3</sub>O<sub>4</sub>→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2688-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanism involved in the phase transformation process of pyrolusite (MnO2) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn2+) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min−1, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO2→Mn2O3→Mn3O4→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.

在还原焙烧过程中对辉绿岩相变的精确调节
该研究系统地阐明了还原气氛中焙烧辉绿岩(MnO2)相变过程的机理,旨在有效利用低品位复合锰矿资源。单因素实验结果表明,在焙烧时间为 25 分钟、焙烧温度为 700℃、CO 浓度为 20%、总气量为 500 mL-min-1 的条件下,焙烧产物的二价锰(Mn2+)分布率为 95.30%,其中的锰主要以锰矿石(MnO)的形式存在。扫描电子显微镜和布鲁瑙尔-埃美特-泰勒理论证明了焙烧产物的微观结构演变,以及辉绿岩矿石从表面到核心的逐渐减少。热力学计算、X 射线光电子能谱和 X 射线衍射分析确定,辉绿岩的相变遵循 MnO2→Mn2O3→Mn3O4→MnO 的顺序逐相进行,各价态锰氧化物的还原同时进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信