Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fengjuan Zhang, Chenhui Liu, Srinivasakannan Chandrasekar, Yingwei Li, Fuchang Xu
{"title":"Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching","authors":"Fengjuan Zhang, Chenhui Liu, Srinivasakannan Chandrasekar, Yingwei Li, Fuchang Xu","doi":"10.1007/s12613-023-2727-1","DOIUrl":null,"url":null,"abstract":"<p>The preparation process of sodium molybdate has the disadvantages of high energy consumption, low thermal efficiency, and high raw material requirement of molybdenum trioxide, in order to realize the green and efficient development of molybdenum concentrate resources, this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching. Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate. The effects of roasting temperature, holding time, and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O) were investigated. Under the optimal process conditions: roasting temperature of 700°C, holding time of 110 min, and power-to-mass ratio of 110 W/g, the molybdenum state of existence was converted from MoS<sub>2</sub> to MoO<sub>3</sub>. The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated, the optimal leaching conditions include a solution concentration of 2.5 mol/L, a liquid-to-solid ratio of 2 mL/g, a leaching temperature of 60°C, and leaching solution termination at pH 8. The optimum conditions result in a leaching rate of sodium molybdate of 96.24%. Meanwhile, the content of sodium molybdate reaches 94.08wt% after leaching and removing impurities. Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution. This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate, which provides a new idea for the high-value utilization of molybdenum concentrate.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2727-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The preparation process of sodium molybdate has the disadvantages of high energy consumption, low thermal efficiency, and high raw material requirement of molybdenum trioxide, in order to realize the green and efficient development of molybdenum concentrate resources, this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching. Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate. The effects of roasting temperature, holding time, and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na2MoO4·2H2O) were investigated. Under the optimal process conditions: roasting temperature of 700°C, holding time of 110 min, and power-to-mass ratio of 110 W/g, the molybdenum state of existence was converted from MoS2 to MoO3. The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated, the optimal leaching conditions include a solution concentration of 2.5 mol/L, a liquid-to-solid ratio of 2 mL/g, a leaching temperature of 60°C, and leaching solution termination at pH 8. The optimum conditions result in a leaching rate of sodium molybdate of 96.24%. Meanwhile, the content of sodium molybdate reaches 94.08wt% after leaching and removing impurities. Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution. This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate, which provides a new idea for the high-value utilization of molybdenum concentrate.

用微波焙烧和碱浸出法从钼精矿制备钼酸钠
钼酸钠的制备工艺存在能耗高、热效率低、对三氧化钼原料要求高等缺点,为实现钼精矿资源的绿色高效开发,本文提出了一种微波强化焙烧碱浸法从钼精矿中高效回收钼并制备钼酸钠的新工艺。热力学分析表明了氧化焙烧钼精矿的可行性。研究了焙烧温度、保温时间和功率质量比对氧化产物和浸出产物钼酸钠(Na2MoO4-2H2O)的影响。在焙烧温度为 700°C、保温时间为 110 分钟、功率质量比为 110 W/g 的最佳工艺条件下,钼的存在状态由 MoS2 转变为 MoO3。研究了钼煅烧碱浸出制备钼酸钠的工艺,最佳浸出条件包括溶液浓度为 2.5 mol/L、液固比为 2 mL/g、浸出温度为 60℃、浸出液终点 pH 为 8。同时,浸出除去杂质后,钼酸钠的含量达到 94.08wt%。通过用碳酸钠溶液调节浸出液的 pH 值,可有效分离铁和铝杂质。该研究避免了传统工艺的缺点,利用微波冶金的优势制备了高品质的钼酸钠,为钼精矿的高值化利用提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信