Interdisciplinary Sciences: Computational Life Sciences最新文献

筛选
英文 中文
A Multi-view Molecular Pre-training with Generative Contrastive Learning. 利用生成式对比学习进行多视角分子预训练。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-09-01 Epub Date: 2024-05-06 DOI: 10.1007/s12539-024-00632-z
Yunwu Liu, Ruisheng Zhang, Yongna Yuan, Jun Ma, Tongfeng Li, Zhixuan Yu
{"title":"A Multi-view Molecular Pre-training with Generative Contrastive Learning.","authors":"Yunwu Liu, Ruisheng Zhang, Yongna Yuan, Jun Ma, Tongfeng Li, Zhixuan Yu","doi":"10.1007/s12539-024-00632-z","DOIUrl":"10.1007/s12539-024-00632-z","url":null,"abstract":"<p><p>Molecular representation learning can preserve meaningful molecular structures as embedding vectors, which is a necessary prerequisite for molecular property prediction. Yet, learning how to accurately represent molecules remains challenging. Previous approaches to learning molecular representations in an end-to-end manner potentially suffered information loss while neglecting the utilization of molecular generative representations. To obtain rich molecular feature information, the pre-training molecular representation model utilized different molecular representations to reduce information loss caused by a single molecular representation. Therefore, we provide the MVGC, a unique multi-view generative contrastive learning pre-training model. Our pre-training framework specifically acquires knowledge of three fundamental feature representations of molecules and effectively integrates them to predict molecular properties on benchmark datasets. Comprehensive experiments on seven classification tasks and three regression tasks demonstrate that our proposed MVGC model surpasses the majority of state-of-the-art approaches. Moreover, we explore the potential of the MVGC model to learn the representation of molecules with chemical significance.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"741-754"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Detection Method for High-Order SNP Epistatic Interactions Based on Explicit-Encoding-Based Multitasking Harmony Search. 基于显式编码的多任务和谐搜索的高阶 SNP 表观相互作用的新型检测方法
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1007/s12539-024-00621-2
Shouheng Tuo, Jiewei Jiang
{"title":"A Novel Detection Method for High-Order SNP Epistatic Interactions Based on Explicit-Encoding-Based Multitasking Harmony Search.","authors":"Shouheng Tuo, Jiewei Jiang","doi":"10.1007/s12539-024-00621-2","DOIUrl":"10.1007/s12539-024-00621-2","url":null,"abstract":"<p><p>To elucidate the genetic basis of complex diseases, it is crucial to discover the single-nucleotide polymorphisms (SNPs) contributing to disease susceptibility. This is particularly challenging for high-order SNP epistatic interactions (HEIs), which exhibit small individual effects but potentially large joint effects. These interactions are difficult to detect due to the vast search space, encompassing billions of possible combinations, and the computational complexity of evaluating them. This study proposes a novel explicit-encoding-based multitasking harmony search algorithm (MTHS-EE-DHEI) specifically designed to address this challenge. The algorithm operates in three stages. First, a harmony search algorithm is employed, utilizing four lightweight evaluation functions, such as Bayesian network and entropy, to efficiently explore potential SNP combinations related to disease status. Second, a G-test statistical method is applied to filter out insignificant SNP combinations. Finally, two machine learning-based methods, multifactor dimensionality reduction (MDR) as well as random forest (RF), are employed to validate the classification performance of the remaining significant SNP combinations. This research aims to demonstrate the effectiveness of MTHS-EE-DHEI in identifying HEIs compared to existing methods, potentially providing valuable insights into the genetic architecture of complex diseases. The performance of MTHS-EE-DHEI was evaluated on twenty simulated disease datasets and three real-world datasets encompassing age-related macular degeneration (AMD), rheumatoid arthritis (RA), and breast cancer (BC). The results demonstrably indicate that MTHS-EE-DHEI outperforms four state-of-the-art algorithms in terms of both detection power and computational efficiency. The source code is available at https://github.com/shouhengtuo/MTHS-EE-DHEI.git .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"688-711"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GraphsformerCPI: Graph Transformer for Compound-Protein Interaction Prediction. GraphsformerCPI:用于化合物-蛋白质相互作用预测的图形转换器
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-03-08 DOI: 10.1007/s12539-024-00609-y
Jun Ma, Zhili Zhao, Tongfeng Li, Yunwu Liu, Jun Ma, Ruisheng Zhang
{"title":"GraphsformerCPI: Graph Transformer for Compound-Protein Interaction Prediction.","authors":"Jun Ma, Zhili Zhao, Tongfeng Li, Yunwu Liu, Jun Ma, Ruisheng Zhang","doi":"10.1007/s12539-024-00609-y","DOIUrl":"10.1007/s12539-024-00609-y","url":null,"abstract":"<p><p>Accurately predicting compound-protein interactions (CPI) is a critical task in computer-aided drug design. In recent years, the exponential growth of compound activity and biomedical data has highlighted the need for efficient and interpretable prediction approaches. In this study, we propose GraphsformerCPI, an end-to-end deep learning framework that improves prediction performance and interpretability. GraphsformerCPI treats compounds and proteins as sequences of nodes with spatial structures, and leverages novel structure-enhanced self-attention mechanisms to integrate semantic and graph structural features within molecules for deep molecule representations. To capture the vital association between compound atoms and protein residues, we devise a dual-attention mechanism to effectively extract relational features through .cross-mapping. By extending the powerful learning capabilities of Transformers to spatial structures and extensively utilizing attention mechanisms, our model offers strong interpretability, a significant advantage over most black-box deep learning methods. To evaluate GraphsformerCPI, extensive experiments were conducted on benchmark datasets including human, C. elegans, Davis and KIBA datasets. We explored the impact of model depth and dropout rate on performance and compared our model against state-of-the-art baseline models. Our results demonstrate that GraphsformerCPI outperforms baseline models in classification datasets and achieves competitive performance in regression datasets. Specifically, on the human dataset, GraphsformerCPI achieves an average improvement of 1.6% in AUC, 0.5% in precision, and 5.3% in recall. On the KIBA dataset, the average improvement in Concordance index (CI) and mean squared error (MSE) is 3.3% and 7.2%, respectively. Molecular docking shows that our model provides novel insights into the intrinsic interactions and binding mechanisms. Our research holds practical significance in effectively predicting CPIs and binding affinities, identifying key atoms and residues, enhancing model interpretability.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"361-377"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GEnDDn: An lncRNA-Disease Association Identification Framework Based on Dual-Net Neural Architecture and Deep Neural Network. GEnDDn:基于双网神经架构和深度神经网络的 lncRNA-疾病关联识别框架
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-05-11 DOI: 10.1007/s12539-024-00619-w
Lihong Peng, Mengnan Ren, Liangliang Huang, Min Chen
{"title":"GEnDDn: An lncRNA-Disease Association Identification Framework Based on Dual-Net Neural Architecture and Deep Neural Network.","authors":"Lihong Peng, Mengnan Ren, Liangliang Huang, Min Chen","doi":"10.1007/s12539-024-00619-w","DOIUrl":"10.1007/s12539-024-00619-w","url":null,"abstract":"<p><p>Accumulating studies have demonstrated close relationships between long non-coding RNAs (lncRNAs) and diseases. Identification of new lncRNA-disease associations (LDAs) enables us to better understand disease mechanisms and further provides promising insights into cancer targeted therapy and anti-cancer drug design. Here, we present an LDA prediction framework called GEnDDn based on deep learning. GEnDDn mainly comprises two steps: First, features of both lncRNAs and diseases are extracted by combining similarity computation, non-negative matrix factorization, and graph attention auto-encoder, respectively. And each lncRNA-disease pair (LDP) is depicted as a vector based on concatenation operation on the extracted features. Subsequently, unknown LDPs are classified by aggregating dual-net neural architecture and deep neural network. Using six different evaluation metrics, we found that GEnDDn surpassed four competing LDA identification methods (SDLDA, LDNFSGB, IPCARF, LDASR) on the lncRNADisease and MNDR databases under fivefold cross-validation experiments on lncRNAs, diseases, LDPs, and independent lncRNAs and independent diseases, respectively. Ablation experiments further validated the powerful LDA prediction performance of GEnDDn. Furthermore, we utilized GEnDDn to find underlying lncRNAs for lung cancer and breast cancer. The results elucidated that there may be dense linkages between IFNG-AS1 and lung cancer as well as between HIF1A-AS1 and breast cancer. The results require further biomedical experimental verification. GEnDDn is publicly available at https://github.com/plhhnu/GEnDDn.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"418-438"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network. 结合图谱和超图谱卷积网络预测 miRNA 与疾病的关联性
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-01-29 DOI: 10.1007/s12539-023-00599-3
Xujun Liang, Ming Guo, Longying Jiang, Ying Fu, Pengfei Zhang, Yongheng Chen
{"title":"Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.","authors":"Xujun Liang, Ming Guo, Longying Jiang, Ying Fu, Pengfei Zhang, Yongheng Chen","doi":"10.1007/s12539-023-00599-3","DOIUrl":"10.1007/s12539-023-00599-3","url":null,"abstract":"<p><p>miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA-disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA-disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA-disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA-disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"289-303"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning Accelerates De Novo Design of Antimicrobial Peptides. 机器学习加速抗菌肽的新设计
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-02-28 DOI: 10.1007/s12539-024-00612-3
Kedong Yin, Wen Xu, Shiming Ren, Qingpeng Xu, Shaojie Zhang, Ruiling Zhang, Mengwan Jiang, Yuhong Zhang, Degang Xu, Ruifang Li
{"title":"Machine Learning Accelerates De Novo Design of Antimicrobial Peptides.","authors":"Kedong Yin, Wen Xu, Shiming Ren, Qingpeng Xu, Shaojie Zhang, Ruiling Zhang, Mengwan Jiang, Yuhong Zhang, Degang Xu, Ruifang Li","doi":"10.1007/s12539-024-00612-3","DOIUrl":"10.1007/s12539-024-00612-3","url":null,"abstract":"<p><p>Efficient and precise design of antimicrobial peptides (AMPs) is of great importance in the field of AMP development. Computing provides opportunities for peptide de novo design. In the present investigation, a new machine learning-based AMP prediction model, AP_Sin, was trained using 1160 AMP sequences and 1160 non-AMP sequences. The results showed that AP_Sin correctly classified 94.61% of AMPs on a comprehensive dataset, outperforming the mainstream and open-source models (Antimicrobial Peptide Scanner vr.2, iAMPpred and AMPlify) and being effective in identifying AMPs. In addition, a peptide sequence generator, AP_Gen, was devised based on the concept of recombining dominant amino acids and dipeptide compositions. After inputting the parameters of the 71 tridecapeptides from antimicrobial peptides database (APD3) into AP_Gen, a tridecapeptide bank consisting of de novo designed 17,496 tridecapeptide sequences were randomly generated, from which 2675 candidate AMP sequences were identified by AP_Sin. Chemical synthesis was performed on 180 randomly selected candidate AMP sequences, of which 18 showed high antimicrobial activities against a wide range of the tested pathogenic microorganisms, and 16 of which had a minimal inhibitory concentration of less than 10 μg/mL against at least one of the tested pathogenic microorganisms. The method established in this research accelerates the discovery of valuable candidate AMPs and provides a novel approach for de novo design of antimicrobial peptides.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"392-403"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformative Deep Neural Network Approaches in Kidney Ultrasound Segmentation: Empirical Validation with an Annotated Dataset. 肾脏超声波分割中的变革性深度神经网络方法:使用注释数据集进行经验验证。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-02-27 DOI: 10.1007/s12539-024-00620-3
Rashid Khan, Chuda Xiao, Yang Liu, Jinyu Tian, Zhuo Chen, Liyilei Su, Dan Li, Haseeb Hassan, Haoyu Li, Weiguo Xie, Wen Zhong, Bingding Huang
{"title":"Transformative Deep Neural Network Approaches in Kidney Ultrasound Segmentation: Empirical Validation with an Annotated Dataset.","authors":"Rashid Khan, Chuda Xiao, Yang Liu, Jinyu Tian, Zhuo Chen, Liyilei Su, Dan Li, Haseeb Hassan, Haoyu Li, Weiguo Xie, Wen Zhong, Bingding Huang","doi":"10.1007/s12539-024-00620-3","DOIUrl":"10.1007/s12539-024-00620-3","url":null,"abstract":"<p><p>Kidney ultrasound (US) images are primarily employed for diagnosing different renal diseases. Among them, one is renal localization and detection, which can be carried out by segmenting the kidney US images. However, kidney segmentation from US images is challenging due to low contrast, speckle noise, fluid, variations in kidney shape, and modality artifacts. Moreover, well-annotated US datasets for renal segmentation and detection are scarce. This study aims to build a novel, well-annotated dataset containing 44,880 US images. In addition, we propose a novel training scheme that utilizes the encoder and decoder parts of a state-of-the-art segmentation algorithm. In the pre-processing step, pixel intensity normalization improves contrast and facilitates model convergence. The modified encoder-decoder architecture improves pyramid-shaped hole pooling, cascaded multiple-hole convolutions, and batch normalization. The pre-processing step gradually reconstructs spatial information, including the capture of complete object boundaries, and the post-processing module with a concave curvature reduces the false positive rate of the results. We present benchmark findings to validate the quality of the proposed training scheme and dataset. We applied six evaluation metrics and several baseline segmentation approaches to our novel kidney US dataset. Among the evaluated models, DeepLabv3+ performed well and achieved the highest dice, Hausdorff distance 95, accuracy, specificity, average symmetric surface distance, and recall scores of 89.76%, 9.91, 98.14%, 98.83%, 3.03, and 90.68%, respectively. The proposed training strategy aids state-of-the-art segmentation models, resulting in better-segmented predictions. Furthermore, the large, well-annotated kidney US public dataset will serve as a valuable baseline source for future medical image analysis research.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"439-454"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference of Gene Regulatory Networks Based on Multi-view Hierarchical Hypergraphs. 基于多视角层次超图的基因调控网络推断。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-02-11 DOI: 10.1007/s12539-024-00604-3
Songyang Wu, Kui Jin, Mingjing Tang, Yuelong Xia, Wei Gao
{"title":"Inference of Gene Regulatory Networks Based on Multi-view Hierarchical Hypergraphs.","authors":"Songyang Wu, Kui Jin, Mingjing Tang, Yuelong Xia, Wei Gao","doi":"10.1007/s12539-024-00604-3","DOIUrl":"10.1007/s12539-024-00604-3","url":null,"abstract":"<p><p>Since gene regulation is a complex process in which multiple genes act simultaneously, accurately inferring gene regulatory networks (GRNs) is a long-standing challenge in systems biology. Although graph neural networks can formally describe intricate gene expression mechanisms, current GRN inference methods based on graph learning regard only transcription factor (TF)-target gene interactions as pairwise relationships, and cannot model the many-to-many high-order regulatory patterns that prevail among genes. Moreover, these methods often rely on limited prior regulatory knowledge, ignoring the structural information of GRNs in gene expression profiles. Therefore, we propose a multi-view hierarchical hypergraphs GRN (MHHGRN) inference model. Specifically, multiple heterogeneous biological information is integrated to construct multi-view hierarchical hypergraphs of TFs and target genes, using hypergraph convolution networks to model higher order complex regulatory relationships. Meanwhile, the coupled information diffusion mechanism and the cross-domain messaging mechanism facilitate the information sharing between genes to optimise gene embedding representations. Finally, a unique channel attention mechanism is used to adaptively learn feature representations from multiple views for GRN inference. Experimental results show that MHHGRN achieves better results than the baseline methods on the E. coli and S. cerevisiae benchmark datasets of the DREAM5 challenge, and it has excellent cross-species generalization, achieving comparable or better performance on scRNA-seq datasets from five mouse and two human cell lines.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"318-332"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MetaV: A Pioneer in feature Augmented Meta-Learning Based Vision Transformer for Medical Image Classification. MetaV:用于医学图像分类的基于特征增强元学习的视觉变换器的先驱。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-06-29 DOI: 10.1007/s12539-024-00630-1
Shaharyar Alam Ansari, Arun Prakash Agrawal, Mohd Anas Wajid, Mohammad Saif Wajid, Aasim Zafar
{"title":"MetaV: A Pioneer in feature Augmented Meta-Learning Based Vision Transformer for Medical Image Classification.","authors":"Shaharyar Alam Ansari, Arun Prakash Agrawal, Mohd Anas Wajid, Mohammad Saif Wajid, Aasim Zafar","doi":"10.1007/s12539-024-00630-1","DOIUrl":"10.1007/s12539-024-00630-1","url":null,"abstract":"<p><p>Image classification, a fundamental task in computer vision, faces challenges concerning limited data handling, interpretability, improved feature representation, efficiency across diverse image types, and processing noisy data. Conventional architectural approaches have made insufficient progress in addressing these challenges, necessitating architectures capable of fine-grained classification, enhanced accuracy, and superior generalization. Among these, the vision transformer emerges as a noteworthy computer vision architecture. However, its reliance on substantial data for training poses a drawback due to its complexity and high data requirements. To surmount these challenges, this paper proposes an innovative approach, MetaV, integrating meta-learning into a vision transformer for medical image classification. N-way K-shot learning is employed to train the model, drawing inspiration from human learning mechanisms utilizing past knowledge. Additionally, deformational convolution and patch merging techniques are incorporated into the vision transformer model to mitigate complexity and overfitting while enhancing feature representation. Augmentation methods such as perturbation and Grid Mask are introduced to address the scarcity and noise in medical images, particularly for rare diseases. The proposed model is evaluated using diverse datasets including Break His, ISIC 2019, SIPaKMed, and STARE. The achieved performance accuracies of 89.89%, 87.33%, 94.55%, and 80.22% for Break His, ISIC 2019, SIPaKMed, and STARE, respectively, present evidence validating the superior performance of the proposed model in comparison to conventional models, setting a new benchmark for meta-vision image classification models.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"469-488"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LPI-SKMSC: Predicting LncRNA-Protein Interactions with Segmented k-mer Frequencies and Multi-space Clustering. LPI-SKMSC:利用分割 k-mer 频率和多空间聚类预测 LncRNA 与蛋白质的相互作用。
IF 3.9 2区 生物学
Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-01-11 DOI: 10.1007/s12539-023-00598-4
Dian-Zheng Sun, Zhan-Li Sun, Mengya Liu, Shuang-Hao Yong
{"title":"LPI-SKMSC: Predicting LncRNA-Protein Interactions with Segmented k-mer Frequencies and Multi-space Clustering.","authors":"Dian-Zheng Sun, Zhan-Li Sun, Mengya Liu, Shuang-Hao Yong","doi":"10.1007/s12539-023-00598-4","DOIUrl":"10.1007/s12539-023-00598-4","url":null,"abstract":"<p><p> Long noncoding RNAs (lncRNAs) have significant regulatory roles in gene expression. Interactions with proteins are one of the ways lncRNAs play their roles. Since experiments to determine lncRNA-protein interactions (LPIs) are expensive and time-consuming, many computational methods for predicting LPIs have been proposed as alternatives. In the LPIs prediction problem, there commonly exists the imbalance in the distribution of positive and negative samples. However, there are few existing methods that give specific consideration to this problem. In this paper, we proposed a new clustering-based LPIs prediction method using segmented k-mer frequencies and multi-space clustering (LPI-SKMSC). It was dedicated to handling the imbalance of positive and negative samples. We constructed segmented k-mer frequencies to obtain global and local features of lncRNA and protein sequences. Then, the multi-space clustering was applied to LPI-SKMSC. The convolutional neural network (CNN)-based encoders were used to map different features of a sample to different spaces. It used multiple spaces to jointly constrain the classification of samples. Finally, the distances between the output features of the encoder and the cluster center in each space were calculated. The sum of distances in all spaces was compared with the cluster radius to predict the LPIs. We performed cross-validation on 3 public datasets and LPI-SKMSC showed the best performance compared to other existing methods. Experimental results showed that LPI-SKMSC could predict LPIs more effectively when faced with imbalanced positive and negative samples. In addition, we illustrated that our model was better at uncovering potential lncRNA-protein interaction pairs.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"378-391"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信