{"title":"Drug Sensitivity Prediction Based on Multi-stage Multi-modal Drug Representation Learning.","authors":"Jinmiao Song, Mingjie Wei, Shuang Zhao, Hui Zhai, Qiguo Dai, Xiaodong Duan","doi":"10.1007/s12539-024-00668-1","DOIUrl":"https://doi.org/10.1007/s12539-024-00668-1","url":null,"abstract":"<p><p>Accurate prediction of anticancer drug responses is essential for developing personalized treatment plans in order to improve cancer patient survival rates and reduce healthcare costs. To this end, we propose a drug sensitivity prediction model based on multi-stage multi-modal drug representations (ModDRDSP) to reflect the properties of drugs more comprehensively, and to better model the complex interactions between cells and drugs. Specifically, we adopt the SMILES representation learning method based on the deep hierarchical bi-directional GRU network (DSBiGRU) and the molecular graph representation learning method based on the deep message-crossing network (DMCN) for the multi-modal information of drugs. Additionally, we integrate the multi-omics information of cell lines based on a convolutional neural network (CNN). Finally, we use an ensemble deep forest algorithm for the prediction of drug sensitivity. After validation, the ModDRDSP shows impressive performance which outperforms the four current industry-leading models. More importantly, ablation experiments demonstrate the validity of each module of the proposed model, and case studies show the good results of ModDRDSP for predicting drug sensitivity, further establishing the superiority of ModDRDSP in terms of performance.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hatice Busra Luleci, Selcen Ari Yuka, Alper Yilmaz
{"title":"Efficient Storage and Analysis of Genomic Data: A k-mer Frequency Mapping and Image Representation Method.","authors":"Hatice Busra Luleci, Selcen Ari Yuka, Alper Yilmaz","doi":"10.1007/s12539-024-00659-2","DOIUrl":"https://doi.org/10.1007/s12539-024-00659-2","url":null,"abstract":"<p><p>k-mer frequencies are crucial for understanding DNA sequence patterns and structure, with applications in motif discovery, genome classification, and short read assembly. However, the exponential increase in the dimension of frequency tables with increasing k-mer length poses storage challenges. In this study, we present a novel method for compressing k-mer data without information loss, aiming to optimize storage and analysis processes. We employed Chaos Game Representation (CGR) to map k-mers to coordinates and used these components to generate raster images of k-mers. The CGR maps were partitioned and labeled based on substrings, with each substring mapped to a subframe, creating a fractal-like structure. The entire k-mer frequency set of each genomic sequence was represented as a single image, with each pixel corresponding to a specific k-mer and its occurrence. This approach reduced file size by up to 16-fold compared to plain text and 3-fold compared to binary format. Furthermore, we demonstrated the feasibility of performing alignment-free similarity analyses on images derived from k-mer frequencies of whole genome sequences from 14 plant species. Our results highlight the potential of this method as a fast and efficient tool for accessing, processing, and analyzing large biological sequence datasets, enabling the retrieval of k-mer frequencies and image reconstruction.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant lncRNA-miRNA Interaction Prediction Based on Counterfactual Heterogeneous Graph Attention Network.","authors":"Yu He, ZiLan Ning, XingHui Zhu, YinQiong Zhang, ChunHai Liu, SiWei Jiang, ZheMing Yuan, HongYan Zhang","doi":"10.1007/s12539-024-00652-9","DOIUrl":"https://doi.org/10.1007/s12539-024-00652-9","url":null,"abstract":"<p><p>Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) provides a new perspective for understanding regulatory relationships in plant life processes. Recently, computational methods based on graph neural networks (GNNs) have been widely employed to predict lncRNA-miRNA interactions (LMIs), which compensate for the inadequacy of biological experiments. However, the low-semantic and noise of graph limit the performance of existing GNN-based methods. In this paper, we develop a novel Counterfactual Heterogeneous Graph Attention Network (CFHAN) to improve the robustness to against the noise and the prediction of plant LMIs. Firstly, we construct a real-world based lncRNA-miRNA (L-M) heterogeneous network. Secondly, CFHAN utilizes the node-level attention, the semantic-level attention, and the counterfactual links to enhance the node embeddings learning. Finally, these embeddings are used as inputs for Multilayer Perceptron (MLP) to predict the interactions between lncRNAs and miRNAs. Evaluating our method on a benchmark dataset of plant LMIs, CFHAN outperforms five state-of-the-art methods, and achieves an average AUC and average ACC of 0.9953 and 0.9733, respectively. This demonstrates CFHAN's ability to predict plant LMIs and exhibits promising cross-species prediction ability, offering valuable insights for experimental LMI researches.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Empowering Graph Neural Network-Based Computational Drug Repositioning with Large Language Model-Inferred Knowledge Representation.","authors":"Yaowen Gu, Zidu Xu, Carl Yang","doi":"10.1007/s12539-024-00654-7","DOIUrl":"https://doi.org/10.1007/s12539-024-00654-7","url":null,"abstract":"<p><p>Computational drug repositioning, through predicting drug-disease associations (DDA), offers significant potential for discovering new drug indications. Current methods incorporate graph neural networks (GNN) on drug-disease heterogeneous networks to predict DDAs, achieving notable performances compared to traditional machine learning and matrix factorization approaches. However, these methods depend heavily on network topology, hampered by incomplete and noisy network data, and overlook the wealth of biomedical knowledge available. Correspondingly, large language models (LLMs) excel in graph search and relational reasoning, which can possibly enhance the integration of comprehensive biomedical knowledge into drug and disease profiles. In this study, we first investigate the contribution of LLM-inferred knowledge representation in drug repositioning and DDA prediction. A zero-shot prompting template was designed for LLM to extract high-quality knowledge descriptions for drug and disease entities, followed by embedding generation from language models to transform the discrete text to continual numerical representation. Then, we proposed LLM-DDA with three different model architectures (LLM-DDA<sub>Node Feat</sub>, LLM-DDA<sub>Dual GNN</sub>, LLM-DDA<sub>GNN-AE</sub>) to investigate the best fusion mode for LLM-based embeddings. Extensive experiments on four DDA benchmarks show that, LLM-DDA<sub>GNN-AE</sub> achieved the optimal performance compared to 11 baselines with the overall relative improvement in AUPR of 23.22%, F1-Score of 17.20%, and precision of 25.35%. Meanwhile, selected case studies of involving Prednisone and Allergic Rhinitis highlighted the model's capability to identify reliable DDAs and knowledge descriptions, supported by existing literature. This study showcases the utility of LLMs in drug repositioning with its generality and applicability in other biomedical relation prediction tasks.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinxiong Fang, Da-fang Zhang, Kun Xie, Luyun Xu, Xia-an Bi
{"title":"Bilinear Perceptual Fusion Algorithm Based on Brain Functional and Structural Data for ASD Diagnosis and Regions of Interest Identification","authors":"Jinxiong Fang, Da-fang Zhang, Kun Xie, Luyun Xu, Xia-an Bi","doi":"10.1007/s12539-024-00651-w","DOIUrl":"https://doi.org/10.1007/s12539-024-00651-w","url":null,"abstract":"<p>Autism spectrum disorder (ASD) is a serious mental disorder with a complex pathogenesis mechanism and variable presentation among individuals. Although many deep learning algorithms have been used to diagnose ASD, most of them focus on a single modality of data, resulting in limited information extraction and poor stability. In this paper, we propose a bilinear perceptual fusion (BPF) algorithm that leverages data from multiple modalities. In our algorithm, different schemes are used to extract features according to the characteristics of functional and structural data. Through bilinear operations, the associations between the functional and structural features of each region of interest (ROI) are captured. Then the associations are used to integrate the feature representation. Graph convolutional neural networks (GCNs) can effectively utilize topology and node features in brain network analysis. Therefore, we design a deep learning framework called BPF-GCN and conduct experiments on publicly available ASD dataset. The results show that the classification accuracy of BPF-GCN reached 82.35%, surpassing existing methods. This demonstrates the superiority of its classification performance, and the framework can extract ROIs related to ASD. Our work provides a valuable reference for the timely diagnosis and treatment of ASD.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>Based on the extracted functional and structural features, we design a generic framework called BPF-GCN. It can not only diagnose ASD, but also identify pathogenic ROIs. BPF-GCN consists of four parts. They are extraction of brain functional features, extraction of brain structural features, feature fusion and classification.</p>\u0000","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":"41 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protein Multiple Conformation Prediction Using Multi-Objective Evolution Algorithm.","authors":"Minghua Hou, Sirong Jin, Xinyue Cui, Chunxiang Peng, Kailong Zhao, Le Song, Guijun Zhang","doi":"10.1007/s12539-023-00597-5","DOIUrl":"10.1007/s12539-023-00597-5","url":null,"abstract":"<p><p>The breakthrough of AlphaFold2 and the publication of AlphaFold DB represent a significant advance in the field of predicting static protein structures. However, AlphaFold2 models tend to represent a single static structure, and multiple-conformation prediction remains a challenge. In this work, we proposed a method named MultiSFold, which uses a distance-based multi-objective evolutionary algorithm to predict multiple conformations. To begin, multiple energy landscapes are constructed using different competing constraints generated by deep learning. Subsequently, an iterative modal exploration and exploitation strategy is designed to sample conformations, incorporating multi-objective optimization, geometric optimization and structural similarity clustering. Finally, the final population is generated using a loop-specific sampling strategy to adjust the spatial orientations. MultiSFold was evaluated against state-of-the-art methods using a benchmark set containing 80 protein targets, each characterized by two representative conformational states. Based on the proposed metric, MultiSFold achieves a remarkable success ratio of 56.25% in predicting multiple conformations, while AlphaFold2 only achieves 10.00%, which may indicate that conformational sampling combined with knowledge gained through deep learning has the potential to generate conformations spanning the range between different conformational states. In addition, MultiSFold was tested on 244 human proteins with low structural accuracy in AlphaFold DB to test whether it could further improve the accuracy of static structures. The experimental results demonstrate the performance of MultiSFold, with a TM-score better than that of AlphaFold2 by 2.97% and RoseTTAFold by 7.72%. The online server is at http://zhanglab-bioinf.com/MultiSFold .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"519-531"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network.","authors":"Liwei Liu, Yixin Wei, Zhebin Tan, Qi Zhang, Jianqiang Sun, Qi Zhao","doi":"10.1007/s12539-024-00616-z","DOIUrl":"10.1007/s12539-024-00616-z","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are non-coding RNAs generated by reverse splicing. They are involved in biological process and human diseases by interacting with specific RNA-binding proteins (RBPs). Due to traditional biological experiments being costly, computational methods have been proposed to predict the circRNA-RBP interaction. However, these methods have problems of single feature extraction. Therefore, we propose a novel model called circ-FHN, which utilizes only circRNA sequences to predict circRNA-RBP interactions. The circ-FHN approach involves feature coding and a hybrid deep learning model. Feature coding takes into account the physicochemical properties of circRNA sequences and employs four coding methods to extract sequence features. The hybrid deep structure comprises a convolutional neural network (CNN) and a bidirectional gated recurrent unit (BiGRU). The CNN learns high-level abstract features, while the BiGRU captures long-term dependencies in the sequence. To assess the effectiveness of circ-FHN, we compared it to other computational methods on 16 datasets and conducted ablation experiments. Additionally, we conducted motif analysis. The results demonstrate that circ-FHN exhibits exceptional performance and surpasses other methods. circ-FHN is freely available at https://github.com/zhaoqi106/circ-FHN .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"635-648"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DOTAD: A Database of Therapeutic Antibody Developability.","authors":"Wenzhen Li, Hongyan Lin, Ziru Huang, Shiyang Xie, Yuwei Zhou, Rong Gong, Qianhu Jiang, ChangCheng Xiang, Jian Huang","doi":"10.1007/s12539-024-00613-2","DOIUrl":"10.1007/s12539-024-00613-2","url":null,"abstract":"<p><p>The development of therapeutic antibodies is an important aspect of new drug discovery pipelines. The assessment of an antibody's developability-its suitability for large-scale production and therapeutic use-is a particularly important step in this process. Given that experimental assays to assess antibody developability in large scale are expensive and time-consuming, computational methods have been a more efficient alternative. However, the antibody research community faces significant challenges due to the scarcity of readily accessible data on antibody developability, which is essential for training and validating computational models. To address this gap, DOTAD (Database Of Therapeutic Antibody Developability) has been built as the first database dedicated exclusively to the curation of therapeutic antibody developability information. DOTAD aggregates all available therapeutic antibody sequence data along with various developability metrics from the scientific literature, offering researchers a robust platform for data storage, retrieval, exploration, and downloading. In addition to serving as a comprehensive repository, DOTAD enhances its utility by integrating a web-based interface that features state-of-the-art tools for the assessment of antibody developability. This ensures that users not only have access to critical data but also have the convenience of analyzing and interpreting this information. The DOTAD database represents a valuable resource for the scientific community, facilitating the advancement of therapeutic antibody research. It is freely accessible at http://i.uestc.edu.cn/DOTAD/ , providing an open data platform that supports the continuous growth and evolution of computational methods in the field of antibody development.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"623-634"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaqi Zhai, Wenda Wang, Ranxi Zhao, Daiwen Sun, Da Lu, Xinqi Gong
{"title":"BDM: An Assessment Metric for Protein Complex Structure Models Based on Distance Difference Matrix.","authors":"Jiaqi Zhai, Wenda Wang, Ranxi Zhao, Daiwen Sun, Da Lu, Xinqi Gong","doi":"10.1007/s12539-024-00622-1","DOIUrl":"10.1007/s12539-024-00622-1","url":null,"abstract":"<p><p>Protein complex structure prediction is an important problem in computational biology. While significant progress has been made for protein monomers, accurate evaluation of protein complexes remains challenging. Existing assessment methods in CASP, lack dedicated metrics for evaluating complexes. DockQ, a widely used metric, has some limitations. In this study, we propose a novel metric called BDM (Based on Distance difference Matrix) for assessing protein complex prediction structures. Our approach utilizes a distance difference matrix derived from comparing real and predicted protein structures, establishing a linear correlation with Root Mean Square Deviation (RMSD). BDM overcomes limitations associated with receptor-ligand differentiation and eliminates the requirement for structure alignment, making it a more effective and efficient metric. Evaluation of BDM using CASP14 and CASP15 test sets demonstrates superior performance compared to the official CASP scoring. BDM provides accurate and reasonable assessments of predicted protein complexes, wide adoption of BDM has the potential to advance protein complex structure prediction and facilitate related researches across scientific domains. Code is available at http://mialab.ruc.edu.cn/BDMServer/ .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"677-687"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Deng, Jing Zhang, Jie Liu, Yuqi Liu, Zong Dai, Xiaoyong Zou, Zhanchao Li
{"title":"Identifying Protein Phosphorylation Site-Disease Associations Based on Multi-Similarity Fusion and Negative Sample Selection by Convolutional Neural Network.","authors":"Qian Deng, Jing Zhang, Jie Liu, Yuqi Liu, Zong Dai, Xiaoyong Zou, Zhanchao Li","doi":"10.1007/s12539-024-00615-0","DOIUrl":"10.1007/s12539-024-00615-0","url":null,"abstract":"<p><p>As one of the most important post-translational modifications (PTMs), protein phosphorylation plays a key role in a variety of biological processes. Many studies have shown that protein phosphorylation is associated with various human diseases. Therefore, identifying protein phosphorylation site-disease associations can help to elucidate the pathogenesis of disease and discover new drug targets. Networks of sequence similarity and Gaussian interaction profile kernel similarity were constructed for phosphorylation sites, as well as networks of disease semantic similarity, disease symptom similarity and Gaussian interaction profile kernel similarity were constructed for diseases. To effectively combine different phosphorylation sites and disease similarity information, random walk with restart algorithm was used to obtain the topology information of the network. Then, the diffusion component analysis method was utilized to obtain the comprehensive phosphorylation site similarity and disease similarity. Meanwhile, the reliable negative samples were screened based on the Euclidean distance method. Finally, a convolutional neural network (CNN) model was constructed to identify potential associations between phosphorylation sites and diseases. Based on tenfold cross-validation, the evaluation indicators were obtained including accuracy of 93.48%, specificity of 96.82%, sensitivity of 90.15%, precision of 96.62%, Matthew's correlation coefficient of 0.8719, area under the receiver operating characteristic curve of 0.9786 and area under the precision-recall curve of 0.9836. Additionally, most of the top 20 predicted disease-related phosphorylation sites (19/20 for Alzheimer's disease; 20/16 for neuroblastoma) were verified by literatures and databases. These results show that the proposed method has an outstanding prediction performance and a high practical value.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"649-664"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}